Download Free Proteases In Physiology And Pathology Book in PDF and EPUB Free Download. You can read online Proteases In Physiology And Pathology and write the review.

This book bridges the gap between fundamental research and biomedical and pharmacological applications on proteases. It represents a comprehensive overview of the multifaceted field of proteases in cellular environment and highlights the recently elucidated functions of complex proteolytic systems in different diseases. Several established investigators have elucidated the crucial role of proteases in biological processes, including how proteolytic function and regulation can be combined to develop new strategies of therapeutic interventions. Proteases form one of the largest and most diverse families of enzymes known. It is now clear that proteases are involved in every aspect of life functions of an organism. Under physiological conditions, proteases are regulated by their endogenous inhibitors; however, when the activity of proteases is not regulated appropriately, disease processes can result in. So, there is absolute need for a stringent control of proteolytic activities in cells and tissues. Dysregulation of proteases may cause derangement of cellular signalling network resulting in different pathophysiological conditions such as vascular remodelling, atherosclerotic plaque progression, ulcer and rheumatoid arthritis, Alzheimer disease, cancer metastasis, tumor progression and inflammation. Additionally, many infective microorganisms require proteases for replication or use proteases as virulence factors, which have facilitated the development of protease-targeted therapies for a variety of parasitic diseases.
Using a multidisciplinary approach, this book describes the biochemical mechanisms associated with dysregulation of proteases and the resulting pathophysiological consequences. It highlights the role and regulation of different types of proteases as well as their synthetic and endogenous inhibitors. The role of proteases was initially thought to be limited to general metabolic digestion. However, we now know that the role of protein breakdown is much more complex, and proteases have multiple functions: they are coupled to turnover and can affect protein composition, function and synthesis. In addition to eliminating abnormal proteins, breakdown has many modulatory functions, including activating and inactivating enzymes, modulating membrane function, altering receptor channel properties, affecting transcription and cell cycles and forming active peptides. The ubiquity of proteases in nature makes them an important target for drug development. This in-depth, comprehensive is a valuable resource for researchers involved in identifying new targets for drug development. With its multidisciplinary scope, it bridges the gap between fundamental and translational research in the biomedical and pharmaceutical industries, making it thought-provoking reading for scientists in the field.
The secretions of the exocrine pancreas provide for digestion of a meal into components that are then available for processing and absorption by the intestinal epithelium. Without the exocrine pancreas, malabsorption and malnutrition result. This chapter describes the cellular participants responsible for the secretion of digestive enzymes and fluid that in combination provide a pancreatic secretion that accomplishes the digestive functions of the gland. Key cellular participants, the acinar cell and the duct cell, are responsible for digestive enzyme and fluid secretion, respectively, of the exocrine pancreas. This chapter describes the neurohumoral pathways that mediate the pancreatic response to a meal as well as details of the cellular mechanisms that are necessary for the organ responses, including protein synthesis and transport and ion transports, and the regulation of these responses by intracellular signaling systems. Examples of pancreatic diseases resulting from dysfunction in cellular mechanisms provide emphasis of the importance of the normal physiologic mechanisms.
Apoptosis, or cell death, can be pathological, a sign of disease and damage, or physiological, a process essential for normal health. This book, with contributions from experts in the field, provides a timely compilation of reviews of mechanisms of apoptosis. The book is organized into three convenient sections. The first section explores the different processes of cell death and how they relate to one another. The second section focuses on organ-specific apoptosis-related diseases. The third section explores cell death in non-mammalian organisms, such as plants. This comprehensive text is a must-read for all researchers and scholars interested in apoptosis.
Proteolysis is an irreversible posttranslational modification affecting each and every protein from its biosynthesis to its degradation. Limited proteolysis regulates targeting and activity throughout the lifetime of proteins. Balancing proteolysis is therefore crucial for physiological homeostasis. Control mechanisms include proteolytic maturation of zymogens resulting in active proteases and the shut down of proteolysis by counteracting endogenous protease inhibitors. Beyond the protein level, proteolytic enzymes are involved in key decisions during development that determine life and death – from single cells to adult individuals. In particular, we are becoming aware of the subtle role that proteases play in signaling events within proteolysis networks, in which the enzymes act synergistically and form alliances in a web-like fashion. Proteases come in different flavors. At least five families of mechanistically distinct enzymes and even more inhibitor families are known to date, many family members are still to be studied in detail. We have learned a lot about the diversity of the about 600 proteases in the human genome and begin to understand their physiological roles in the degradome. However, there are still many open questions regarding their actions in pathophysiology. It is in this area where the development of small molecule inhibitors as therapeutic agents is extremely promising. Approaching proteolysis as the most important, irreversible post-translational protein modification essentially requires an integrated effort of complementary research disciplines. In fact, proteolytic enzymes seem as diverse as the scientists working with these intriguing proteins. This book reflects the efforts of many in this exciting field of research where team and network formations are essential to move ahead.
Handbook of Proteolytic Enzymes, Second Edition, Volume 1: Aspartic and Metallo Peptidases is a compilation of numerous progressive research studies on proteolytic enzymes. This edition is organized into two main sections encompassing 328 chapters. This handbook is organized around a system for the classification of peptidases, which is a hierarchical one built on the concepts of catalytic type, clan, family and peptidase. The concept of catalytic type of a peptidase depends upon the chemical nature of the groups responsible for catalysis. The recognized catalytic types are aspartic, cysteine, metallo, serine, threonine, and the unclassified enzymes, while clans and families are groups of homologous peptidases. Homology at the level of a family of peptidases is shown by statistically significant relationship in amino acid sequence to a representative member called the type example, or to another member of the family that has already been shown to be related to the type example. Each chapter discusses the history, activity, specificity, structural chemistry, preparation, and biological aspects of the enzyme. This book will prove useful to enzyme chemists and researchers.
This report considers the biological and behavioral mechanisms that may underlie the pathogenicity of tobacco smoke. Many Surgeon General's reports have considered research findings on mechanisms in assessing the biological plausibility of associations observed in epidemiologic studies. Mechanisms of disease are important because they may provide plausibility, which is one of the guideline criteria for assessing evidence on causation. This report specifically reviews the evidence on the potential mechanisms by which smoking causes diseases and considers whether a mechanism is likely to be operative in the production of human disease by tobacco smoke. This evidence is relevant to understanding how smoking causes disease, to identifying those who may be particularly susceptible, and to assessing the potential risks of tobacco products.
Serine proteases play significant roles in healh and human disease. Abnormal expression and activities of serine proteases have been linked to the pathogenesis of many diseases. The book presents correlation between serine proteases and human diseases. It helps the reader understand classification, catalytic mechanism and types of serine proteases and their role in human disease pathogenesis at mechanistic level. The chapters explain the role of serine proteases in various diseases including respiratory disorders and cancer. It also covers the therapeutic importance of serine proteases as drug target and explains the mechanistic insights of serine proteases inhibitors. Serine protease are known to play crucial role in biological processes but disturbance in their equilibrium can result in serious health conditions. To maintain homeostasis, serine protease inhibitors come in action and inhibit proteases. Several serine protease inhibitors have been identified and many more are being designed as novel compounds for inhibitions of proteases that provide management of comorbidities. Therefore, this book will serve as a useful reference for students and researchers to understand physiological role of serine proteases and their association with initiation and progression of human diseases. It will also help to develop some strategies to develop serine proteases inhibitors as drug target of serine proteases at cellular and molecular level.
Immune Biology of Allogeneic Hematopoietic Stem Cell Transplantation: Models in Discovery and Translation, Second Edition once again provides clinical and scientific researchers with a deep understanding of the current research in this field and the implications for translational practice. By providing an overview of the immune biology of HSCT, an explanation of immune rejection, and detail on antigens and their role in HSCT success, this book embraces biologists and clinicians who need a broad view of the deeply complex processes involved. It then moves on to discuss the immunobiology mechanisms that influence graft-versus-host disease (GVHD), graft-versus-leukemia effect, and transplantation success. Using illustrative figures, highlighting key issues, describing recent successes, and discussing unanswered questions, this book sums up the current state of HSCT to enhance the prospects for the future. The second edition is fully revised and includes new chapters on microbiome, metabolism, kinase targets, micro-RNA and mRNA regulatory mechanisms, signaling pathways in GVHD, innate lymphoid system development, recovery and function in GVHD, genetically engineered T-cell therapies, immune system engagers for GVHD and graft-versus-tumor, and hematopoietic cell transplant for tolerance induction in solid organ grafts. - Brings together perspectives from leading laboratories and clinical research groups to highlight advances from bench to the bedside - Guides readers through the caveats that must be considered when drawing conclusions from studies with animal models before correlating to clinical allogeneic hematopoietic stem cell transplantation (HSCT) scenarios - Categorizes the published advances in various aspects of immune biology of allogeneic HSCT to illustrate opportunities for clinical applications
Cell Surface Proteases provides a comprehensive overview of these important enzymes that catalyze the hydrolysis of a protein as it degrades to a simpler substance. In the 1990s, an explosion of new discoveries shed light on the role of cell surface proteases and extended it beyond degradation of extracellular matrix components to include its influence on growth factors, cell signaling, and other cellular events. This volume unites the scientific literature from across disciplines and teases out unified themes of interactions between cell surface proteases and interconnecting cell surface-related systems -- including integrins and other adhesion molecules. Scientists and students involved in developmental biology, cell biology and disease processes will find this an indispensable resource.* Provides an overview of the entire field of cell surface proteases in a single volume* Presents major issues and astonishing discoveries at the forefront of modern developmental biology and developmental medicine * A thematic volume in the longest-running forum for contemporary issues in developmental biology with over 30 years of coverage