Download Free Prostate Cancer Imaging Computer Aided Diagnosis Prognosis And Intervention Book in PDF and EPUB Free Download. You can read online Prostate Cancer Imaging Computer Aided Diagnosis Prognosis And Intervention and write the review.

This book constitutes the refereed proceedings of the International Workshop on Prostate Cancer Imaging, held in conjunction with MICCAI 2010, in Beijing, China, in September 2010. The 11 revised full papers presented together with 2 invited talks were carefully reviewed and selected from 13 submissions. The papers cover the clinical areas radiology, radiation oncology, digital pathology, and image guided intervention, addressing topics such as prostate segmentation, multi-modal prostate registration, computer-aided diagnosis and classification of prostate cancer.
This book constitutes the refereed proceedings of the International Workshop on Prostate Cancer Imaging, held in conjunction with MICCAI 2011, in Toronto, Canada, in September 2011. The 15 revised full papers presented together with 2 invited talks were carefully reviewed and selected from 19 submissions. The papers cover the clinical areas of radiology, radiation oncology, and image guided intervention, addressing topics such as prostate segmentation, multi-modal prostate registration, and computer-aided diagnosis and classification of prostate cancer.
This book covers novel strategies and state of the art approaches for automated non-invasive systems for early prostate cancer diagnosis. Prostate cancer is the most frequently diagnosed malignancy after skin cancer and the second leading cause of cancer related male deaths in the USA after lung cancer. However, early detection of prostate cancer increases chances of patients’ survival. Generally, The CAD systems analyze the prostate images in three steps: (i) prostate segmentation; (ii) Prostate description or feature extraction; and (iii) classification of the prostate status. Explores all of the latest research and developments in state-of-the art imaging of the prostate from world class experts. Contains a comprehensive overview of 2D/3D Shape Modeling for MRI data. Presents a detailed examination of automated segmentation of the prostate in 3D imaging. Examines Computer-Aided-Diagnosis through automated techniques. There will be extensive references at the end of each chapter to enhance further study.
This book deals with computational anatomy, an emerging discipline recognized in medical science as a derivative of conventional anatomy. It is also a completely new research area on the boundaries of several sciences and technologies, such as medical imaging, computer vision, and applied mathematics. Computational Anatomy Based on Whole Body Imaging highlights the underlying principles, basic theories, and fundamental techniques in computational anatomy, which are derived from conventional anatomy, medical imaging, computer vision, and applied mathematics, in addition to various examples of applications in clinical data. The book will cover topics on the basics and applications of the new discipline. Drawing from areas in multidisciplinary fields, it provides comprehensive, integrated coverage of innovative approaches to computational anatomy. As well, Computational Anatomy Based on Whole Body Imaging serves as a valuable resource for researchers including graduate students in the field and a connection with the innovative approaches that are discussed. Each chapter has been supplemented with concrete examples of images and illustrations to facilitate understanding even for readers unfamiliar with computational anatomy.
As one of the most important tasks in biomedical imaging, image segmentation provides the foundation for quantitative reasoning and diagnostic techniques. A large variety of different imaging techniques, each with its own physical principle and characteristics (e.g., noise modeling), often requires modality-specific algorithmic treatment. In recent years, substantial progress has been made to biomedical image segmentation. Biomedical image segmentation is characterized by several specific factors. This book presents an overview of the advanced segmentation algorithms and their applications.
Prostate cancer is the most diagnosed form of cancer and one of the leading causes of cancer death in men, but survival rates are relatively high with sufficiently early diagnosis. The current clinical model for initial prostate cancer screening is invasive and subject to overdiagnosis. As such, the use of magnetic resonance imaging (MRI) has recently grown in popularity as a non-invasive imaging-based prostate cancer screening method. In particular, the use of high volume quantitative radiomic features extracted from multi-parametric MRI is gaining attraction for the auto-detection of prostate tumours since it provides a plethora of mineable data which can be used for both detection and prognosis of prostate cancer. Current image-based cancer detection methods, however, face notable challenges that include noise in MR images, variability between different MRI modalities, weak contrast, and non-homogeneous texture patterns, making it difficult for diagnosticians to identify tumour candidates. In this thesis, a comprehensive framework for computer-aided prostate cancer detection using multi-parametric MRI was introduced. The framework consists of two parts: i) a saliency-based method for identifying suspicious regions in multi-parametric MR prostate images based on statistical texture distinctiveness, and ii) automatic prostate tumour candidate detection using a radiomics-driven conditional random field (RD-CRF). The framework was evaluated using real clinical prostate multi-parametric MRI data from 20 patients, and both parts were compared against state-of-the-art approaches. The suspicious region detection method achieved a 1.5% increase in sensitivity, and a 10% increase in specificity and accuracy over the state-of-the-art method, indicating its potential for more visually meaningful identification of suspicious tumour regions. The RD-CRF method was shown to improve the detection of tumour candidates by mitigating sparsely distributed tumour candidates and improving the detected tumour candidates via spatial consistency and radiomic feature relationships. Thus, the developed framework shows potential for aiding medical professionals with performing more efficient and accurate computer-aided prostate cancer detection.
The book covers novel strategies of state of the art in engineering and clinical analysis and approaches for analyzing abdominal imaging, including lung, mediastinum, pleura, liver, kidney and gallbladder. In the last years the imaging techniques have experienced a tremendous improvement in the diagnosis and characterization of the pathologies that affect abdominal organs. In particular, the introduction of extremely fast CT scanners and high Magnetic field MR Systems allow imaging with an exquisite level of detail the anatomy and pathology of liver, kidney, pancreas, gallbladder as well as lung and mediastinum. Moreover, thanks to the development of powerful computer hardware and advanced mathematical algorithms the quantitative and automated\semi automated diagnosis of the pathology is becoming a reality. Medical image analysis plays an essential role in the medical imaging field, including computer-aided diagnosis, organ/lesion segmentation, image registration, and image-guided therapy. This book will cover all the imaging techniques, potential for applying such imaging clinically, and offer present and future applications as applied to the abdomen and thoracic imaging with the most world renowned scientists in these fields. The main aim of this book is to help advance scientific research within the broad field of abdominal imaging. This book focuses on major trends and challenges in this area, and it presents work aimed to identify new techniques and their use in medical imaging analysis for abdominal imaging. ​
Multisensor Data Fusion: From Algorithms and Architectural Design to Applications covers the contemporary theory and practice of multisensor data fusion, from fundamental concepts to cutting-edge techniques drawn from a broad array of disciplines. Featuring contributions from the world’s leading data fusion researchers and academicians, this authoritative book: Presents state-of-the-art advances in the design of multisensor data fusion algorithms, addressing issues related to the nature, location, and computational ability of the sensors Describes new materials and achievements in optimal fusion and multisensor filters Discusses the advantages and challenges associated with multisensor data fusion, from extended spatial and temporal coverage to imperfection and diversity in sensor technologies Explores the topology, communication structure, computational resources, fusion level, goals, and optimization of multisensor data fusion system architectures Showcases applications of multisensor data fusion in fields such as medicine, transportation's traffic, defense, and navigation Multisensor Data Fusion: From Algorithms and Architectural Design to Applications is a robust collection of modern multisensor data fusion methodologies. The book instills a deeper understanding of the basics of multisensor data fusion as well as a practical knowledge of the problems that can be faced during its execution.