Download Free Prospects In Topology Am 138 Volume 138 Book in PDF and EPUB Free Download. You can read online Prospects In Topology Am 138 Volume 138 and write the review.

This collection brings together influential papers by mathematicians exploring the research frontiers of topology, one of the most important developments of modern mathematics. The papers cover a wide range of topological specialties, including tools for the analysis of group actions on manifolds, calculations of algebraic K-theory, a result on analytic structures on Lie group actions, a presentation of the significance of Dirac operators in smoothing theory, a discussion of the stable topology of 4-manifolds, an answer to the famous question about symmetries of simply connected manifolds, and a fresh perspective on the topological classification of linear transformations. The contributors include A. Adem, A. H. Assadi, M. Bökstedt, S. E. Cappell, R. Charney, M. W. Davis, P. J. Eccles, M. H. Freedman, I. Hambleton, J. C. Hausmann, S. Illman, G. Katz, M. Kreck, W. Lück, I. Madsen, R. J. Milgram, J. Morava, E. K. Pedersen, V. Puppe, F. Quinn, A. Ranicki, J. L. Shaneson, D. Sullivan, P. Teichner, Z. Wang, and S. Weinberger.
This collection brings together influential papers by mathematicians exploring the research frontiers of topology, one of the most important developments of modern mathematics. The papers cover a wide range of topological specialties, including tools for the analysis of group actions on manifolds, calculations of algebraic K-theory, a result on analytic structures on Lie group actions, a presentation of the significance of Dirac operators in smoothing theory, a discussion of the stable topology of 4-manifolds, an answer to the famous question about symmetries of simply connected manifolds, and a fresh perspective on the topological classification of linear transformations. The contributors include A. Adem, A. H. Assadi, M. Bökstedt, S. E. Cappell, R. Charney, M. W. Davis, P. J. Eccles, M. H. Freedman, I. Hambleton, J. C. Hausmann, S. Illman, G. Katz, M. Kreck, W. Lück, I. Madsen, R. J. Milgram, J. Morava, E. K. Pedersen, V. Puppe, F. Quinn, A. Ranicki, J. L. Shaneson, D. Sullivan, P. Teichner, Z. Wang, and S. Weinberger.
Surgery theory, the basis for the classification theory of manifolds, is now about forty years old. The sixtieth birthday (on December 14, 1996) of C.T.C. Wall, a leading member of the subject's founding generation, led the editors of this volume to reflect on the extraordinary accomplishments of surgery theory as well as its current enormously varied interactions with algebra, analysis, and geometry. Workers in many of these areas have often lamented the lack of a single source surveying surgery theory and its applications. Because no one person could write such a survey, the editors asked a variety of experts to report on the areas of current interest. This is the second of two volumes resulting from that collective effort. It will be useful to topologists, to other interested researchers, and to advanced students. The topics covered include current applications of surgery, Wall's finiteness obstruction, algebraic surgery, automorphisms and embeddings of manifolds, surgery theoretic methods for the study of group actions and stratified spaces, metrics of positive scalar curvature, and surgery in dimension four. In addition to the editors, the contributors are S. Ferry, M. Weiss, B. Williams, T. Goodwillie, J. Klein, S. Weinberger, B. Hughes, S. Stolz, R. Kirby, L. Taylor, and F. Quinn.
This book is a comprehensive treatment of the theory of persistence modules over the real line. It presents a set of mathematical tools to analyse the structure and to establish the stability of such modules, providing a sound mathematical framework for the study of persistence diagrams. Completely self-contained, this brief introduces the notion of persistence measure and makes extensive use of a new calculus of quiver representations to facilitate explicit computations. Appealing to both beginners and experts in the subject, The Structure and Stability of Persistence Modules provides a purely algebraic presentation of persistence, and thus complements the existing literature, which focuses mainly on topological and algorithmic aspects.
Algebraic K-theory encodes important invariants for several mathematical disciplines, spanning from geometric topology and functional analysis to number theory and algebraic geometry. As is commonly encountered, this powerful mathematical object is very hard to calculate. Apart from Quillen's calculations of finite fields and Suslin's calculation of algebraically closed fields, few complete calculations were available before the discovery of homological invariants offered by motivic cohomology and topological cyclic homology. This book covers the connection between algebraic K-theory and Bökstedt, Hsiang and Madsen's topological cyclic homology and proves that the difference between the theories are ‘locally constant’. The usefulness of this theorem stems from being more accessible for calculations than K-theory, and hence a single calculation of K-theory can be used with homological calculations to obtain a host of ‘nearby’ calculations in K-theory. For instance, Quillen's calculation of the K-theory of finite fields gives rise to Hesselholt and Madsen's calculations for local fields, and Voevodsky's calculations for the integers give insight into the diffeomorphisms of manifolds. In addition to the proof of the full integral version of the local correspondence between K-theory and topological cyclic homology, the book provides an introduction to the necessary background in algebraic K-theory and highly structured homotopy theory; collecting all necessary tools into one common framework. It relies on simplicial techniques, and contains an appendix summarizing the methods widely used in the field. The book is intended for graduate students and scientists interested in algebraic K-theory, and presupposes a basic knowledge of algebraic topology.
This volume combines contributions in topology and representation theory that reflect the increasingly vigorous interactions between these areas. Topics such as group theory, homotopy theory, cohomology of groups, and modular representations are covered. All papers have been carefully refereed and offer lasting value.
Geometric Topology is a foundational component of modern mathematics, involving the study of spacial properties and invariants of familiar objects such as manifolds and complexes. This volume, which is intended both as an introduction to the subject and as a wide ranging resouce for those already grounded in it, consists of 21 expository surveys written by leading experts and covering active areas of current research. They provide the reader with an up-to-date overview of this flourishing branch of mathematics.
Surgery theory, the basis for the classification theory of manifolds, is now about forty years old. There have been some extraordinary accomplishments in that time, which have led to enormously varied interactions with algebra, analysis, and geometry. Workers in many of these areas have often lamented the lack of a single source that surveys surgery theory and its applications. Indeed, no one person could write such a survey. The sixtieth birthday of C. T. C. Wall, one of the leaders of the founding generation of surgery theory, provided an opportunity to rectify the situation and produce a comprehensive book on the subject. Experts have written state-of-the-art reports that will be of broad interest to all those interested in topology, not only graduate students and mathematicians, but mathematical physicists as well. Contributors include J. Milnor, S. Novikov, W. Browder, T. Lance, E. Brown, M. Kreck, J. Klein, M. Davis, J. Davis, I. Hambleton, L. Taylor, C. Stark, E. Pedersen, W. Mio, J. Levine, K. Orr, J. Roe, J. Milgram, and C. Thomas.
A further introduction to modern developments in the representation theory of finite groups and associative algebras.