Download Free Prospects For Saline Agriculture Book in PDF and EPUB Free Download. You can read online Prospects For Saline Agriculture and write the review.

Saline land is a resource capable of significant production. Recent advances in research in breeding for salt tolerance in wheat, biotechnology in rice, and selection and rehabilitation of salt-tolerant plants are of economic importance in arid/saline conditions. This book gives some practical approaches for saline agriculture and afforestation, and describes examples of cultivating salt-tolerant/halophytic plants for commercial interest on salt-affected land or with highly salinized water in Australia, China, Central Asia, Egypt, Pakistan, and Russia. It also explores the possibilities of arid/saline agriculture and afforestation in UAE.
This book discusses the role of salt in current agricultural approaches, including the low salt tolerance of agricultural crops and trees, impact of saline soils, and salt-resistant plants. Halophytes are extremely salt tolerant plants, which are able to grow and survive under salt at concentrations as high as 5 g/l by maintaining negative water potential. The salt-tolerant microbes inhabiting the rhizospheres of halophytes may contribute to their salt tolerance, and the rhizospheres of halophytic plants provide an ideal opportunity for isolating various groups of salt-tolerant microbes that could enhance the growth of different crops under salinity stress. The book offers an overview of salt-tolerant microbes' ability to increase plant tolerance to salt to facilitate plant growth, the potential of the halophytes’ rhizospheres as a reservoir of beneficial salt-tolerant microbes, their future application as bio-inoculants in agriculture and a valuable resource for an alternative way of improving crop tolerance to salinity and promoting saline soil-based agriculture. This special collection of reviews highlights some of the recent advances in applied aspects of plant (halophytes)-microbe interactions and their contribution towards eco-friendly approaches saline soil-based agriculture.
Food production on present and future saline soils deserves the world’s attention particularly because food security is a pressing issue, millions of hectares of degraded soils are available worldwide, freshwater is becoming increasingly scarce, and the global sea-level rise threatens food production in fertile coastal lowlands. Future of Sustainable Agriculture in Saline Environments aims to showcase the global potential of saline agriculture. The book covers the essential topics, such as policy and awareness, soil management, future crops, and genetic developments, all supplemented by case studies that show how this knowledge has been applied. It offers an overview of current research themes and practical cases focused on enhancing food production on saline lands. FEATURES Describes the critical role of the revitalization of salt-degraded lands in achieving sustainability in agriculture on a global scale Discusses practical solutions toward using drylands and delta areas threatened by salinity for sustainable food production Presents strategies for adaptation to climate change and sea-level rise through food production under saline conditions Addresses the diverse aspects of crop salt tolerance and microbiological associations Highlights the complex problem of salinity and waterlogging and safer management of poor-quality water, supplemented by case studies A PDF version of this book is available for free in Open Access at www.taylorfrancis.com. It has been made available under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license.
Halophytes for Food Security in Dry Lands addresses the concerns surrounding global food scarcity, especially focusing on those living in arid and dry lands The book touches on food crises in dry regions of the world and proposes halophytes as an alternate source of consumption for such areas. Halophytes, those plants that thrive in saline soil and provide either food source options themselves, or positively enhance an eco-system's ability to produce food, and are thus an important and increasingly recognized option for addressing the needs of the nearly 1/6 of the world's population that lives in these arid and semi-arid climates. Including presentations from the 2014 International Conference on Halophytes for Food Security in Dry Lands, this book features insights from the leading researchers in the subject. It is a valuable resource that includes information on the nutritional value of halophytes, their genetic basis and potential enhancement, adaption of halophytes, and lessons learned thus far. - Provides comprehensive coverage of the importance and utilization of halophytes to compensate the demand of food in whole world especially in the dry regions - Contains insights from ecological to molecular fields - Includes edible halophytes as well as those that enhance food-producing eco-systems - Presents information for improving abiotic stress tolerance in plants
In biology, the very big global and thevery small molecular issues currently appear to be in the limelight ofpublic interest and research funding policies. They are in danger of drifting apart from each other. They apply very coarse and very fine scaling, respectively, but coherence is lost when the various intermediate levels of different scales are neglected. Regarding SALINITY we are clearly dealing with a global problem, which due to progressing salinization of arable land is of vital interest for society. Explanations and basic understanding as well as solutions and remedies may finally lie at the molecular level. It is a general approach in science to look for understanding of any system under study at the next finer (or "lower") level of scaling. This in itself shows that we need a whole ladder of levels with increasingly finer steps from the global impact to the molecular bases of SALINITY relations. It is in this vein that the 22 chapters of this book aim at providing an integrated view of SALINITY.
This open access book is an outcome of the collaboration between the Soil and Water Management & Crop Nutrition Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria, and Dr. Shabbir A Shahid, Senior Salinity Management Expert, Freelancer based in United Arab Emirates.The objective of this book is to develop protocols for salinity and sodicity assessment and develop mitigation and adaptation measures to use saline and sodic soils sustainably. The focus is on important issues related to salinity and sodicity and to describe these in an easy and user friendly way. The information has been compiled from the latest published literature and from the authors’ publications specific to the subject matter. The book consists of six chapters. Chapter 1 introduces the terms salinity and sodicity and describes various salinity classification systems commonly used around the world. Chapter 2 reviews global distribution of salinization and socioeconomic aspects related to salinity and crop production. Chapters 3 covers comprehensively salinity and sodicity adaptation and mitigation options including physical, chemical, hydrological and biological methods. Chapter 4 discusses the efforts that have been made to demonstrate the development of soil salinity zones under different irrigation systems. Chapter 5 discusses the quality of irrigation water, boron toxicity and relative tolerance to boron, the effects of chlorides on crops. Chapter 6 introduces the role of nuclear techniques in saline agriculture.
The papers assembled here cover topics such as technological advances in soil salinity mapping and monitoring, management and reclamation of salt-affected soils, use of marginal quality water for crop production, salt-tolerance mechanisms in plants, biosaline agriculture and agroforestry, microbiological interventions for marginal soils, opportunities and challenges in using marginal waters, and soil and water management in irrigated agriculture.