Download Free Propositional Logics Book in PDF and EPUB Free Download. You can read online Propositional Logics and write the review.

This book presents the history, philosophy, and mathematics of the major systems of propositional logic. Classical logic, modal logics, many-valued logics, intuitionism, paraconsistent logics, and dependent implication are examined in separate chapters. Each begins with a motivation in the originators' own terms, followed by the standard formal semantics, syntax, and completeness theorem. The chapters on the various logics are largely self-contained so that the book can be used as a reference. An appendix summarizes the formal semantics and axiomatizations of the logics. The view that unifies the exposition is that propositional logics comprise a spectrum: as the aspect of propositions under consideration varies, the logic varies. Each logic is shown to fall naturally within a general framework for semantics. A theory of translations between logics is presented that allows for further comparisons, and necessary conditions are given for a translation to preserve meaning. For this third edition the material has been re-organized to make the text easier to study, and a new section on paraconsistent logics with simple semantics has been added which challenges standard views on the nature of consequence relations. The text includes worked examples and hundreds of exercises, from routine to open problems, making the book with its clear and careful exposition ideal for courses or individual study.
Classical logic is traditionally introduced by itself, but that makes it seem arbitrary and unnatural. This text introduces classical alongside several nonclassical logics (relevant, constructive, quantative, paraconsistent).
This book grew out of my confusion. If logic is objective how can there be so many logics? Is there one right logic, or many right ones? Is there some underlying unity that connects them? What is the significance of the mathematical theorems about logic which I've learned if they have no connection to our everyday reasoning? The answers I propose revolve around the perception that what one pays attention to in reasoning determines which logic is appropriate. The act of abstracting from our reasoning in our usual language is the stepping stone from reasoned argument to logic. We cannot take this step alone, for we reason together: logic is reasoning which has some objective value. For you to understand my answers, or perhaps better, conjectures, I have retraced my steps: from the concrete to the abstract, from examples, to general theory, to further confirming examples, to reflections on the significance of the work.
This book develops the theory of one of the most important notions in the methodology of formal systems. Particularly, completeness plays an important role in propositional logic where many variants of the notion have been defined. This approach allows also for a more profound view upon some essential properties of propositional systems. For these purposes, the theory of logical matrices, and the theory of consequence operations is exploited.
Note: This is a custom edition of Levin's full Discrete Mathematics text, arranged specifically for use in a discrete math course for future elementary and middle school teachers. (It is NOT a new and updated edition of the main text.)This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this.Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs.While there are many fine discrete math textbooks available, this text has the following advantages: - It is written to be used in an inquiry rich course.- It is written to be used in a course for future math teachers.- It is open source, with low cost print editions and free electronic editions.
Discusses the deep connections between logic and complexity theory, and lists a number of intriguing open problems.
This fourth volume of the book series combines propositional logic and R-calculus for a new point of view to consider belief revision. It gives the R-calculi for propositional logic, description logics, propositional modal logic, logic programming, ⇝-propositional logic, semantic networks, and three-valued logic, etc.. Applications of R-calculus in logic of supersequents are also given. This book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners in the field of logic.
The book is about Gentzen calculi for (the main systems of) modal logic. It is divided into three parts. In the first part we introduce and discuss the main philosophical ideas related to proof theory, and we try to identify criteria for distinguishing good sequent calculi. In the second part we present the several attempts made from the 50’s until today to provide modal logic with Gentzen calculi. In the third and and final part we analyse new calculi for modal logics, called tree-hypersequent calculi, which were recently introduced by the author. We show in a precise and clear way the main results that can be proved with and about them.
Language in Action demonstrates the viability of mathematical research into the foundations of categorial grammar, a topic at the border between logic and linguistics. Since its initial publication it has become the classic work in the foundations of categorial grammar. A new introduction to this paperback edition updates the open research problems and records relevant results through pointers to the literature. Van Benthem presents the categorial processing of syntax and semantics as a central component in a more general dynamic logic of information flow, in tune with computational developments in artificial intelligence and cognitive science. Using the paradigm of categorial grammar, he describes the substructural logics driving the dynamics of natural language syntax and semantics. This is a general type-theoretic approach that lends itself easily to proof-theoretic and semantic studies in tandem with standard logic. The emphasis is on a broad landscape of substructural categorial logics and their proof-theoretical and semantic peculiarities. This provides a systematic theory for natural language understanding, admitting of significant mathematical results. Moreover, the theory makes possible dynamic interpretations that view natural languages as programming formalisms for various cognitive activities.