Download Free Properties Of Matter And Acoustic Book in PDF and EPUB Free Download. You can read online Properties Of Matter And Acoustic and write the review.

This book is written to meet the requirements of first semester B.Sc. Physics Major Students of Madras University, Chennai, Tamil Nadu. The subject matter in this book has been astutely developed keeping in view the actual difficulties faced by the students who hail mostly from rural areas of Tamil Nadu.
This book has been written for the students of B.Sc Physics of Various Indian Universities.
The book is a comprehensive work on Properties of Matter which introduces the students to the fundamentals of the subject. It adopts a unique 'ab initio' approach to the presentation of matter- solids, liquids and gasses- with extensive usage of Calculus throughout the book. For each topic, the focus is on optimum blend of theory as well as practical application. Examples and extensive exercises solved with the logarithms reinforce the concepts and stimulate the desire among users to test how far they have grasped and imbibed the basic principles. It primarily caters to the undergraduate courses offered in Indian universities.
Crystals are sometimes called 'Flowers of the Mineral Kingdom'. In addition to their great beauty, crystals and other textured materials are enormously useful in electronics, optics, acoustics and many other engineering applications. This richly illustrated text describes the underlying principles of crystal physics and chemistry, covering a wide range of topics and illustrating numerous applications in many fields of engineering using the most important materials today. Tensors, matrices, symmetry and structure-property relationships form the main subjects of the book. While tensors and matrices provide the mathematical framework for understanding anisotropy, on which the physical and chemical properties of crystals and textured materials often depend, atomistic arguments are also needed to quantify the property coefficients in various directions. The atomistic arguments are partly based on symmetry and partly on the basic physics and chemistry of materials. After introducing the point groups appropriate for single crystals, textured materials and ordered magnetic structures, the directional properties of many different materials are described: linear and nonlinear elasticity, piezoelectricity and electrostriction, magnetic phenomena, diffusion and other transport properties, and both primary and secondary ferroic behavior. With crystal optics (its roots in classical mineralogy) having become an important component of the information age, nonlinear optics is described along with the piexo-optics, magneto-optics, and analogous linear and nonlinear acoustic wave phenomena. Enantiomorphism, optical activity, and chemical anisotropy are discussed in the final chapters of the book.
This book highlights the mathematical and physical properties of acoustical sources with singularities located in the complex plane and presents the application of such special elements to solve acoustical radiation and scattering problems. Sources whose origin lies in the complex plane are also solutions of the wave equation but possess different radiating properties as their counterparts with real positions. Such mathematical constructions are known in the fields of optics and electrodynamics, but they are not common in acoustical research. The objective of the book is to introduce this concept to acousticians and motivate them to engage themselves in further research and application of complex sources. Such sources are particularly useful to formulate Green’s functions and related equivalent source and boundary element methods in half-spaces.
Statistical Thermodynamics and Properties of Matter is written with the advanced undergraduate and graduate student in mind. Its aim is to familiarize the student with the approach that a physicist would take, for example, when tackling problems related to quantum mechanics or thermodynamics.
The discrete sources method is an efficient and powerful tool for solving a large class of boundary-value problems in scattering theory. A variety of numerical methods for discrete sources now exist. In this book, the authors unify these formulations in the context of the so-called discrete sources method. Comprehensive presentation of the discrete sources method Original theory - an extension of the conventional null-field method using discrete sources Practical examples that demonstrate the efficiency and flexibility of elaborated methods (scattering by particles with high aspect ratio, rough particles, nonaxisymmetric particles, multiple scattering) List of discrete sources programmes available via the Internet
In this new edition of their classic work on Cellular Solids, the authors have brought the book completely up to date, including new work on processing of metallic and ceramic foams and on the mechanical, electrical and acoustic properties of cellular solids. Data for commercially available foams are presented on material property charts; two new case studies show how the charts are used for selection of foams in engineering design. Over 150 references appearing in the literature since the publication of the first edition are cited. The text summarises current understanding of the structure and mechanical behaviour of cellular materials, and the ways in which they can be exploited in engineering design. Cellular solids include engineering honeycombs and foams (which can now be made from polymers, metals, ceramics and composites) as well as natural materials, such as wood, cork and cancellous bone.
This comprehensive book presents all aspects of acoustic metamaterials and phononic crystals. The emphasis is on acoustic wave propagation phenomena at interfaces such as refraction, especially unusual refractive properties and negative refraction. A thorough discussion of the mechanisms leading to such refractive phenomena includes local resonances in metamaterials and scattering in phononic crystals.
Architectural Press Library of Design and Detailing: Acoustic Design focuses on the techniques and principles employed in acoustic design, as well as room acoustics, hearing, speech, sound insulation, and noise control and design. The book first elaborates on the perception of sound, properties of sound, and sound in the built form. Concerns cover sound absorption, room acoustics, sound insulation, physical data, units and measurement, sound at a point, and hearing and speech. The manuscript then takes a look at noise control and design. Topics include prediction and prescription, control at source, control in the sound path, building types, and building elements. The text is a valuable source of information for researchers interested in acoustic design.