Download Free Properties Of Interfaces In Amorphous Crystalline Silicon Heterojunctions Book in PDF and EPUB Free Download. You can read online Properties Of Interfaces In Amorphous Crystalline Silicon Heterojunctions and write the review.

Today’s solar cell multi-GW market is dominated by crystalline silicon (c-Si) wafer technology, however new cell concepts are entering the market. One very promising solar cell design to answer these needs is the silicon hetero-junction solar cell, of which the emitter and back surface field are basically produced by a low temperature growth of ultra-thin layers of amorphous silicon. In this design, amorphous silicon (a-Si:H) constitutes both „emitter“ and „base-contact/back surface field“ on both sides of a thin crystalline silicon wafer-base (c-Si) where the electrons and holes are photogenerated; at the same time, a-Si:H passivates the c-Si surface. Recently, cell efficiencies above 23% have been demonstrated for such solar cells. In this book, the editors present an overview of the state-of-the-art in physics and technology of amorphous-crystalline heterostructure silicon solar cells. The heterojunction concept is introduced, processes and resulting properties of the materials used in the cell and their heterointerfaces are discussed and characterization techniques and simulation tools are presented.
Amorphous Silicon/Crystalline Silicon Solar Cells deals with some typical properties of heterojunction solar cells, such as their history, the properties and the challenges of the cells, some important measurement tools, some simulation programs and a brief survey of the state of the art, aiming to provide an initial framework in this field and serve as a ready reference for all those interested in the subject. This book helps to “fill in the blanks” on heterojunction solar cells. Readers will receive a comprehensive overview of the principles, structures, processing techniques and the current developmental states of the devices. Prof. Dr. Wolfgang R. Fahrner is a professor at the University of Hagen, Germany and Nanchang University, China.
The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made to reduce the production costs of “conventional” solar cells (manufactured from monocrystalline silicon using diffusion methods) by instead using cheaper grades of silicon, and simpler pn-junction fabrication. That is the ‘hero’ of this book; the heterojunction solar cell.
The first book of this four-volume edition is dedicated to one of the most promising areas of photovoltaics, which has already reached a large-scale production of the second-generation thin-film solar modules and has resulted in building the powerful solar plants in several countries around the world. Thin-film technologies using direct-gap semiconductors such as CIGS and CdTe offer the lowest manufacturing costs and are becoming more prevalent in the industry allowing to improve manufacturability of the production at significantly larger scales than for wafer or ribbon Si modules. It is only a matter of time before thin films like CIGS and CdTe will replace wafer-based silicon solar cells as the dominant photovoltaic technology. Photoelectric efficiency of thin-film solar modules is still far from the theoretical limit. The scientific and technological problems of increasing this key parameter of the solar cell are discussed in several chapters of this volume.
This book constitutes the thoroughly refereed post-conference proceedings of the First JARA High-Performance Computing Symposium, JARA-HPC 2016, held in Aachen, Germany, in October 2016. The 21 full papers presented were carefully reviewed and selected from 26 submissions. They cover many diverse topics, such as coupling methods and strategies in Computational Fluid Dynamics (CFD), performance portability and applications in HPC, as well as provenance tracking for large-scale simulations.
A valuable overview covering important fundamental and applicative aspects of amorphous nanomaterials! Amorphous nanomaterials are very important in non-crystalline solids, which have emerged as a new category of advanced materials. Compared to the crystalline counterpart, amorphous nanomaterials with isotropic nature always exhibit fast ion diffusion, relieved strain, and higher reactivity, enabling such materials to exhibit high performance in mechanics and catalysis, as well as other interesting properties. Amorphous Nanomaterials: Preparation, Characterization, and Applications covers the fundamental concept, synthesis, characterization, properties, and applications of nanoscaled amorphous materials. It starts with the introduction of amorphous materials, then gives a global view of the history, structure, and growth mechanism of amorphous nanomaterials. Subsequently, some powerful techniques to characterize amorphous materials, such as X-ray absorption fine structure spectroscopy, spherical aberration electron microscope, in-situ-Transmission Electron Microscope, Electron Energy Loss Spectroscopy, and some other defect characterization technologies are included. Furthermore, the emerging innovative methods to fabricate well-defined, regularshaped amorphous nanomaterials, including zero-, one-, two-, and three-dimensional amorphous nanomaterials are systematically introduced. The fascinating properties and applications related to amorphous nanomaterials including the applications in electrocatalysis, batteries, supercapacitors, photocatalysis, mechanics, etc., are presented. It will greatly help the researchers to find professional answers related to amorphous materials. Great topic: amorphous nanomaterials are a very large and important field in both academia and industry Comprehensive: in-depth discussion of various important aspects, from both a fundamental and an applied point of view, on the chemistry, physics and technological importance of the amorphous nanomaterials are presented Vitally needed: the understanding of the fundamentals of amorphous nanomaterials is a prerequisite for devising new applications of such materials Highly relevant: amorphous nanomaterials have found specific applications in chemistry, catalysis, physics, sensing, batteries, supercapacitors, and engineering Amorphous Nanomaterials is a vital resource for materials scientists, inorganic and physical chemists, solid state chemists, physicists, catalytic and analytical chemists, as well as organic chemists.
This book focuses exclusively on control of interfacial properties and structures for semiconductor device applications from the point of view of improving and developing novel electrical properties. The following topics are covered: metal-semiconductors, semiconductor hetero-interfaces, characterization, semiconducting new materials, insulator-semiconductor, interfaces in device, control of interface formation, control of interface properties, contact metallization. A variety of up-to-date research topics such as atomic layer epitaxy, atomic layer passivation, atomic scale characterization including STM and SR techniques, single ion implementation, self-organization crystal growth, in situ measurements for process control and extremely high-spatial resolution analysis techniques, are also included. Furthermore it bridges the macroscopic, mesoscopic, and atomic-scale regimes of semicondutor interfaces, describing the state of the art in forming, controlling and characterizating unique semiconductor interfaces, which will be of practical importance in advanced devices. Intended for both technologists who require an up-to-date assessment of methods for interface formation, processing and characterization, and solid state researchers who desire the latest developments in understanding the basic mechanisms of interface physics, chemistry and electronics, this book will be a welcome addition to the existing literature.
This volume contains written versions of the papers presented at the Second Inter national Conference on Amorphous and Crystalline Silicon Carbide and Related Materials (ICACSC 1988), which was held at Santa Clara University on Decem ber 15 and 16, 1988. The conference followed the First ICACSC held at Howard University, Washington DC, in December 1987 and continued to provide an in ternational forum for discussion and exchange of ideas and results covering the current status of research on SiC and related materials. ICACSC 1988 attracted 105 participants from five countries. The substantial increase in the number of papers compared with the previous year is an indication of the growing interest in this field. Of the 45 papers presented at the conference, 36 refereed manuscripts are included in this volume, while the remaining 9 appear as abstracts. The six invited papers provide detailed reviews of recent results on amorphous and crystalline silicon carbide materials and devices, as well as diamond thin films. The volume is divided into six parts, each covering an important theme of the conference.
As part of the effort to increase the contribution of solar cells (photovoltaics) to our energy mix, this book addresses three main areas: making existing technology cheaper, promoting advanced technologies based on new architectural designs, and developing new materials to serve as light absorbers. Leading scientists throughout the world create a fundamental platform for knowledge sharing that combines the physics, materials, and device architectures of high-efficiency solar cells. While providing a comprehensive introduction to the field, the book highlights directions for further research, and is intended to stimulate readers’ interest in the development of novel materials and technologies for solar energy applications.
The European Photovoltaic Solar Energy Conferences are dedicated to accelerating the impetus towards sustainable development of global PV markets. The 16th in the series, held in Glasgow UK, brought together more than 1500 delegates from 72 countries, and provided an important and vital forum for information exchange in the field. The Conference Proceedings place on record a new phase of market development and scientific endeavour in the PV industry, representing current and innovative thinking in all aspects of the science, technology, markets and business of photovoltaics. In three volumes, the Proceedings present some 790 papers selected for presentation by the scientific review committee of the 16th European Photovoltaic Solar Energy Conference. The comprehensive range of topics covered comprise: * Fundamentals, Novel Devices and New Materials * Thin Film Cells and Technologies * Space Cells and Systems * Crystalline Silicon Solar Cells and Technologies * PV Integration in Buildings * PV Modules and Components of PV Systems * Implementation, Strategies, National Programs and Financing Schemes * Market Deployment in Developing Countries These proceedings are an essential reference for all involved in the global PV industry- scientists, researchers, technologists and those with an interest in global market trends. The conference was organised by WIP-Renewable Energies, Munich, Germany.