Download Free Properties And Characterization Of Amorphous Carbon Films Book in PDF and EPUB Free Download. You can read online Properties And Characterization Of Amorphous Carbon Films and write the review.

Amorphous, hydrogenated carbon (AHC) films can be deposited on various substrates using several techniques, e.g. plasma deposition and ion beam deposition. The resulting films can be hard, wear resistant and transparent.
This book presents the status quo of the structure, preparation, properties and applications of tetrahedrally bonded amorphous carbon (ta-C) films and compares them with related film systems. Tetrahedrally bonded amorphous carbon films (ta-C) combine some of the outstanding properties of diamond with the versatility of amorphous materials. The book compares experimental results with the predictions of theoretical analyses, condensing them to practicable rules. It is strictly application oriented, emphasizing the exceptional potential of ta-C for tribological coatings of tools and components.
This book highlights some of the most important structural, chemical, mechanical and tribological characteristics of DLC films. It is particularly dedicated to the fundamental tribological issues that impact the performance and durability of these coatings. The book provides reliable and up-to-date information on available industrial DLC coatings and includes clear definitions and descriptions of various DLC films and their properties.
This book presents the latest research in ultrathin carbon-based protective overcoats for high areal density magnetic data storage systems, with a particular focus on hard disk drives (HDDs) and tape drives. These findings shed new light on how the microstructure and interfacial chemistry of these sub-20 nm overcoats can be engineered at the nanoscale regime to obtain enhanced properties for wear, thermal and corrosion protection – which are critical for such applications. Readers will also be provided with fresh experimental insights into the suitability of graphene as an atomically-thin overcoat for HDD media. The easy readability of this book will appeal to a wide audience, ranging from non-specialists with a general interest in the field to scientists and industry professionals directly involved in thin film and coatings research.
This book is about thin films; what they are, how they are prepared, how they are characterized, and what they are used for. The contents of this book not only showcase the diversity of thin films, but also reveals the commonality among the work performed in a variety of areas. The chapters in this volume are based on invited papers presented by prominent researchers in the field at a Symposium on "Thin Films: Preparation, Characterization, Applications" at the 221st National Meeting of the American Chemical Society held in San Diego, California. The coverage of the symposium was extensive; topics ranged from highly-ordered metal adlayers on well-defined electrode surfaces to bio-organic films on non-metallic nanoparticles. An objective of this book is for the readers to be able to draw from the experience and results of others in order to improve and expand the understanding of the science and technology of their own thin films systems.
This book presents current research from across the globe in the study of diamond-like carbon films. Topics discussed include the peculiarities of ion-beam synthesis of carbon-based phases; electron field emission properties of non-metal and metal doped diamond like carbon; internal stress and its reduction of hydrogenated diamond-like carbon thin films deposited by plasma CVD methods; incorporating crystalline diamond particles in diamond-like carbon films to improve their properties and diamond-like carbon films applied as an alignment layer for LCDs.
A comprehensive look at the most widely employed carbon-based electrode materials and the numerous electroanalytical applications associated with them. A valuable reference for the emerging age of carbon-based electronics and electrochemistry, this book discusses diverse applications for nanocarbon materials in electrochemical sensing. It highlights the advantages and disadvantages of the different nanocarbon materials currently used for electroanalysis, covering the electrochemical sensing of small-sized molecules, such as metal ions and endocrine disrupting chemicals (EDCs), as well as large biomolecules such as DNA, RNA, enzymes and proteins. A comprehensive look at state-of-the-art applications for nanocarbon materials in electrochemical sensors Emphasizes the relationship between the carbon structures and surface chemistry, and electrochemical performance Covers a wide array of carbon nanomaterials, including nanocarbon films, carbon nanofibers, graphene, diamond nanostructures, and carbon-dots Edited by internationally renowned experts in the field with contributions from researchers at the cutting edge of nanocarbon electroanalysis Nanocarbons for Electroanalysis is a valuable working resource for all chemists and materials scientists working on carbon based-nanomaterials and electrochemical sensors. It also belongs on the reference shelves of academic researchers and industrial scientists in the fields of nanochemistry and nanomaterials, materials chemistry, material science, electrochemistry, analytical chemistry, physical chemistry, and biochemistry.
This handbook--a sequel to the widely used Handbook of Optical Constants of Solids--contains critical reviews and tabulated values of indexes of refraction (n) and extinction coefficients (k) for almost 50 materials that were not covered in the original handbook. For each material, the best known n and k values have been carefully tabulated, from the x-ray to millimeter-wave region of the spectrum by expert optical scientists. In addition, the handbook features thirteen introductory chapters that discuss the determination of n and k by various techniques.* Contributors have decided the best values for n and k* References in each critique allow the reader to go back to the original data to examine and understand where the values have come from* Allows the reader to determine if any data in a spectral region needs to be filled in* Gives a wide and detailed view of experimental techniques for measuring the optical constants n and k* Incorporates and describes crystal structure, space-group symmetry, unit-cell dimensions, number of optic and acoustic modes, frequencies of optic modes, the irreducible representation, band gap, plasma frequency, and static dielectric constant
Scanning Electron Microscopy provides a description of the physics of electron-probe formation and of electron-specimen interactions. The different imaging and analytical modes using secondary and backscattered electrons, electron-beam-induced currents, X-ray and Auger electrons, electron channelling effects, and cathodoluminescence are discussed to evaluate specific contrasts and to obtain quantitative information.
Materials development has reached a point where it is difficult for a single material to satisfy the needs of sophisticated applications in the modern world. Nanocomposite films and coatings achieve much more than the simple addition of the constitutents OCo the law of summation fails to work in the nano-world. This book encompasses three major parts of the development of nanocomposite films and coatings: the first focuses on processing and properties, the second concentrates on mechanical performance, and the third deals with functional performance, including wide application areas ranging from mechanical cutting to solar energy and from electronics to medicine. Sample Chapter(s). Chapter 1: Magnetron Sputtered Hard and Yet Tough Nanocomposite Coatings With Case Studies: Nanocrystalline Tin Embedded in Amorphous SiNx (187 KB). Contents: Magnetron Sputtered Hard and Yet Tough Nanocomposite Coatings with Case Studies: Nanocrystalline TiN Embedded in Amorphous SiN x (S Zhang et al.); Magnetron Sputtered Hard and Yet Tough Nanocomposite Coatings with Case Studies: Nanocrystalline TiC Embedded in Amorphous Carbon (S Zhang et al.); Properties of Chemical Vapor Deposited Nanocrystalline Diamond and Nanodiamond/Amorphous Carbon Composite Films (S C Tjong); Synthesis, Characterization and Applications of Nanocrystalline Diamond Films (Z-Q Xu & A Kumar); Properties of Hard Nanocomposite Thin Films (J Musil); Nanostructured, Multifunctional Tribological Coatings (J J Moore et al.); Nanocomposite Thin Films for Solar Energy Conversion (Y-B Yin); Application of Silicon Nanocrystal in Non-Volatile Memory Devices (T P Chen); Nanocrystalline Silicon Films for Thin Film Transistor and Optoelectronic Applications (Y-J Choi et al.); Amorphous and Nanocomposite Diamond-Like Carbon Coatings for Biomedical Applications (T I T Okpalugo et al.); Nanocoatings for Orthopaedic and Dental Application (W-Q Yan). Readership: Undergraduates, postgraduates, researchers, scientists, college and university professors, research professionals, technology investors and developers, research enterprises, R&D research laboratories, academic and research libraries."