Download Free Properties And Applications Of Transistors Book in PDF and EPUB Free Download. You can read online Properties And Applications Of Transistors and write the review.

Properties and Applications of Transistors focuses on the evolution of transistors as one of the essential elements of modern electronics. The book first provides information on the physical principles of transistors, including conductivity of semiconductors, junction transistors, and transistor technology. The text also looks at the general discussion of linear two-ports. Topics include equivalent circuits for a two-port; relations between the two-ports corresponding to the possible methods of connection of transistors; and elements of matrix algebra. The selection also highlights the capabilities of transistors as linear-amplifiers. The stability and neutralization of transistors; measurement of power gain; transistors with complex base resistance; and point contact transistors at low frequencies are discussed. The text also looks at the maximum ratings of transistors, including maximum voltage and current, cooling by natural convection, and thermal runaway. The book is a vital reference for readers wanting to study transistors.
Transistors play a central role in many electronic circuits, where they usually function as either a switch or an amplifier. This book reviews research in the field of transistors including a new class of transistors whose channels are made from semiconducting carbon nanomaterials; the evolution of these designs and the highlights of the work that has driven their development. Also discussed, herein, are the electronic properties and self-consistent simulations of carbon nanotubes in transistor technology; the future developments in the nanowire field-effect transistor research area; the implementation of chaotic oscillators by using transistors designed with CMOS integrated circuit technology and others.
Advanced Processing, Properties, and Applications of Starch and Other Bio-based Polymers presents the latest cutting-edge research into the processing and applications of bio-based polymers, for novel industrial applications across areas including biomedical and electronics. The book is divided into three sections, covering processing and manufacture, properties, and applications. Throughout the book, key aspects of sustainability are considered, including improved utilization of available natural resources, sustainable design possibilities, cleaner production processes, and waste management. - Focuses on starch-based polymers, examining the latest advances in processing and applications with this valuable category of biopolymer - Highlights industrial sustainability considerations at all steps of the process, including when sourcing materials, designing and producing products, and dealing with waste - Supports the processing and development of starch and other bio-based polymers with enhanced functionality for advanced applications
Germanium is an elemental semiconductor, which played an important role in the birth of the semiconductor but soon was replaced with silicon. However, germanium is poised to make a remarkable comeback in the semiconductor industry. With this increasing attention, this book describes the fundamental aspects of germanium and its applications. The contributing authors are experts in their field with great in-depth knowledge. The authors strongly feel that this contribution might be of interest to readers and help to expand the scope of their knowledge.
An up-to-date, practical guide on upgrading from silicon to GaN, and how to use GaN transistors in power conversion systems design This updated, third edition of a popular book on GaN transistors for efficient power conversion has been substantially expanded to keep students and practicing power conversion engineers ahead of the learning curve in GaN technology advancements. Acknowledging that GaN transistors are not one-to-one replacements for the current MOSFET technology, this book serves as a practical guide for understanding basic GaN transistor construction, characteristics, and applications. Included are discussions on the fundamental physics of these power semiconductors, layout, and other circuit design considerations, as well as specific application examples demonstrating design techniques when employing GaN devices. GaN Transistors for Efficient Power Conversion, 3rd Edition brings key updates to the chapters of Driving GaN Transistors; Modeling, Simulation, and Measurement of GaN Transistors; DC-DC Power Conversion; Envelope Tracking; and Highly Resonant Wireless Energy Transfer. It also offers new chapters on Thermal Management, Multilevel Converters, and Lidar, and revises many others throughout. Written by leaders in the power semiconductor field and industry pioneers in GaN power transistor technology and applications Updated with 35% new material, including three new chapters on Thermal Management, Multilevel Converters, Wireless Power, and Lidar Features practical guidance on formulating specific circuit designs when constructing power conversion systems using GaN transistors A valuable resource for professional engineers, systems designers, and electrical engineering students who need to fully understand the state-of-the-art GaN Transistors for Efficient Power Conversion, 3rd Edition is an essential learning tool and reference guide that enables power conversion engineers to design energy-efficient, smaller, and more cost-effective products using GaN transistors.
This is an exciting stage in the development of organic electronics. It is no longer an area of purely academic interest as increasingly real applications are being developed, some of which are beginning to come on-stream. Areas that have already been commercially developed or which are under intensive development include organic light emitting diodes (for flat panel displays and solid state lighting), organic photovoltaic cells, organic thin film transistors (for smart tags and flat panel displays) and sensors. Within the family of organic electronic materials, liquid crystals are relative newcomers. The first electronically conducting liquid crystals were reported in 1988 but already a substantial literature has developed. The advantage of liquid crystalline semiconductors is that they have the easy processability of amorphous and polymeric semiconductors but they usually have higher charge carrier mobilities. Their mobilities do not reach the levels seen in crystalline organics but they circumvent all of the difficult issues of controlling crystal growth and morphology. Liquid crystals self-organise, they can be aligned by fields and surface forces and, because of their fluid nature, defects in liquid crystal structures readily self-heal. With these matters in mind this is an opportune moment to bring together a volume on the subject of ‘Liquid Crystalline Semiconductors’. The field is already too large to cover in a comprehensive manner so the aim has been to bring together contributions from leading researchers which cover the main areas of the chemistry (synthesis and structure/function relationships), physics (charge transport mechanisms and optical properties) and potential applications in photovoltaics, organic light emitting diodes (OLEDs) and organic field-effect transistors (OFETs). This book will provide a useful introduction to the field for those in both industry and academia and it is hoped that it will help to stimulate future developments.
Announcements for the following year included in some vols.