Download Free Propagation Of An Electromagnetic Wave In A Time Varying Medium Book in PDF and EPUB Free Download. You can read online Propagation Of An Electromagnetic Wave In A Time Varying Medium and write the review.

This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro magnetic materials. Since these volumes were designed to be relatively self contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical tech niques, and on showing how these methods of mathematical physics can be effective in unifying the physics of wave propagation in electromagnetic media. Chapter 1 presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations, and their appli cations to electromagnetic wave propagation under a variety of conditions.
International Series of Monographs in Electromagnetic Waves, Volume 11: Electromagnetic Wave Theory, Part 1 covers the proceedings of an International Scientific Radio Union (U.R.S.I.) Symposium on Electromagnetic Wave Theory. The book contains 61 chapters that are organized into three sections. The first section presents papers about wave propagation, which includes lateral waves; terrestrial waveguides; and plane waves in dissipative media. Next, the title reviews studies about wave guides, including basic properties of periodic waveguides; theoretical investigation of non-uniform waveguides; and waves in a coaxial line partially filled with plasma. The last section covers topics about surface waves, such as a dielectric prism in the corner of overmoded waveguide; lasers and optical communication systems; and microwave and laser resonators. The text will be of great use to researchers and practitioners of disciplines that study or utilize electromagnetic wave technologies, such as electrotechnics and electrical engineering.
Completely revised and updated to reflect recent advances in the fields of materials science and electromagnetics, Electromagnetics of Time Varying Complex Media, Second Edition provides a comprehensive examination of current topics of interest in the research community—including theory, numerical simulation, application, and experimental work. Written by a world leader in the research of frequency transformation in a time-varying magnetoplasma medium, the new edition of this bestselling reference discusses how to apply a time-varying medium to design a frequency and polarization transformer. This authoritative resource remains the only electromagnetic book to cover time-varying anisotropic media, Frequency and Polarization Transformer based on a switched magnetoplasma medium in a cavity, and FDTD numerical simulation for time-varying complex medium. Providing a primer on the theory of using magnetoplasmas for the coherent generation of tunable radiation, early chapters use a mathematical model with one kind of complexity—eliminating the need for high-level mathematics. Using plasma as the basic medium to illustrate various aspects of the transformation of an electromagnetic wave by a complex medium, the text highlights the major effects of each kind of complexity in the medium properties. This significantly expanded edition includes: Three new parts: (a) Numerical Simulation: FDTD Solution, (b) Application: Frequency and Polarization Transformer, and (c) Experiments A slightly enhanced version of the entire first edition, plus 70% new material Reprints of papers previously published by the author—providing researchers with complete access to the subject The text provides the understanding of research techniques useful in electro-optics, plasma science and engineering, microwave engineering, and solid state devices. This complete resource supplies an accessible treatment of the effect of time-varying parameters in conjunction with one or more additional kinds of complexities in the properties of particular mediums.
Completely revised and updated to reflect recent advances in the fields of materials science and electromagnetics, Electromagnetics of Time Varying Complex Media, Second Edition provides a comprehensive examination of current topics of interest in the research community—including theory, numerical simulation, application, and experimental work. Written by a world leader in the research of frequency transformation in a time-varying magnetoplasma medium, the new edition of this bestselling reference discusses how to apply a time-varying medium to design a frequency and polarization transformer. This authoritative resource remains the only electromagnetic book to cover time-varying anisotropic media, Frequency and Polarization Transformer based on a switched magnetoplasma medium in a cavity, and FDTD numerical simulation for time-varying complex medium. Providing a primer on the theory of using magnetoplasmas for the coherent generation of tunable radiation, early chapters use a mathematical model with one kind of complexity—eliminating the need for high-level mathematics. Using plasma as the basic medium to illustrate various aspects of the transformation of an electromagnetic wave by a complex medium, the text highlights the major effects of each kind of complexity in the medium properties. This significantly expanded edition includes: Three new parts: (a) Numerical Simulation: FDTD Solution, (b) Application: Frequency and Polarization Transformer, and (c) Experiments A slightly enhanced version of the entire first edition, plus 70% new material Reprints of papers previously published by the author—providing researchers with complete access to the subject The text provides the understanding of research techniques useful in electro-optics, plasma science and engineering, microwave engineering, and solid state devices. This complete resource supplies an accessible treatment of the effect of time-varying parameters in conjunction with one or more additional kinds of complexities in the properties of particular mediums.
University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves