Download Free Propagation Channel Characterization Parameter Estimation And Modeling For Wireless Communications Book in PDF and EPUB Free Download. You can read online Propagation Channel Characterization Parameter Estimation And Modeling For Wireless Communications and write the review.

A comprehensive reference giving a thorough explanation of propagation mechanisms, channel characteristics results, measurement approaches and the modelling of channels Thoroughly covering channel characteristics and parameters, this book provides the knowledge needed to design various wireless systems, such as cellular communication systems, RFID and ad hoc wireless communication systems. It gives a detailed introduction to aspects of channels before presenting the novel estimation and modelling techniques which can be used to achieve accurate models. To systematically guide readers through the topic, the book is organised in three distinct parts. The first part covers the fundamentals of the characterization of propagation channels, including the conventional single-input single-output (SISO) propagation channel characterization as well as its extension to multiple-input multiple-output (MIMO) cases. Part two focuses on channel measurements and channel data post-processing. Wideband channel measurements are introduced, including the equipment, technology and advantages and disadvantages of different data acquisition schemes. The channel parameter estimation methods are then presented, which include conventional spectral-based estimation, the specular-path-model based high-resolution method, and the newly derived power spectrum estimation methods. Measurement results are used to compare the performance of the different estimation methods. The third part gives a complete introduction to different modelling approaches. Among them, both scattering theoretical channel modelling and measurement-based channel modelling approaches are detailed. This part also approaches how to utilize these two modelling approaches to investigate wireless channels for conventional cellular systems and some new emerging communication systems. This three-part approach means the book caters for the requirements of the audiences at different levels, including readers needing introductory knowledge, engineers who are looking for more advanced understanding, and expert researchers in wireless system design as a reference. Presents technical explanations, illustrated with examples of the theory in practice Discusses results applied to 4G communication systems and other emerging communication systems, such as relay, CoMP, and vehicle-to-vehicle rapid time-variant channels Can be used as comprehensive tutorial for students or a complete reference for engineers in industry Includes selected illustrations in color Program downloads available for readers Companion website with program downloads for readers and presentation slides and solution manual for instructors Essential reading for Graduate students and researchers interested in the characteristics of propagation channel, or who work in areas related to physical layer architectures, air interfaces, navigation, and wireless sensing
A practical tool for propagation channel modeling with MATLAB® simulations. Many books on wireless propagation channel provide a highly theoretical coverage, which for some interested readers, may be difficult to follow. This book takes a very practical approach by introducing the theory in each chapter first, and then carrying out simulations showing how exactly put the theory into practice. The resulting plots are analyzed and commented for clarity, and conclusions are drawn and explained from the obtained results. Key features include: A unique approach to propagation channel modeling with accompanying MATLAB® simulations to demonstrate the theory in practice Contains step by step commentary and analysis of the obtained simulation results in order to provide a comprehensive and structured learning tool Covers a wide range of topics including shadowing effects, coverage and interference, Multipath Narrowband channel, Multipath Wideband channel, propagation in micro and pico-cells, the land mobile satellite (LMS) channel, the directional Multipath channel and MIMO and propagation effects in fixed radio links (terrestrial and satellite) The book comes with an accompanying website that contains the MATLAB® simulations and allows readers to try them out themselves Well suited for lab-use, as reference and as a self-learning tool both for advanced students and professionals Modeling the Wireless Propagation Channel: A simulation approach with MATLAB® will be best suited for postgraduate (Masters and PhD) students and practicing engineers in telecommunications and electrical engineering fields, who are seeking to familiarise themselves with the topic without too many formulas. The book will also be of interest to network engineers, system engineers and researchers
Inclusive Radio Communication Networks for 5G and Beyond is based on the COST IRACON project that consists of 500 researchers from academia and industry, with 120 institutions from Europe, US and the Far East involved. The book presents state-of-the-art design and analysis methods for 5G (and beyond) radio communication networks, along with key challenges and issues related to the development of 5G networks. Covers the latest research on 5G networks – including propagation, localization, IoT and radio channels Based on the International COST research project, IRACON, with 120 institutions and 500 researchers from Europe, US and the Far East involved Provides coverage of IoT protocols, architectures and applications, along with IoT applications in healthcare Contains a concluding chapter on future trends in mobile communications and networking
This textbook takes a unified view of the fundamentals of wireless communication and explains cutting-edge concepts in a simple and intuitive way. An abundant supply of exercises make it ideal for graduate courses in electrical and computer engineering and it will also be of great interest to practising engineers.
mmWave Massive MIMO: A Paradigm for 5G is the first book of its kind to hinge together related discussions on mmWave and Massive MIMO under the umbrella of 5G networks. New networking scenarios are identified, along with fundamental design requirements for mmWave Massive MIMO networks from an architectural and practical perspective. Working towards final deployment, this book updates the research community on the current mmWave Massive MIMO roadmap, taking into account the future emerging technologies emanating from 3GPP/IEEE. The book's editors draw on their vast experience in international research on the forefront of the mmWave Massive MIMO research arena and standardization. This book aims to talk openly about the topic, and will serve as a useful reference not only for postgraduates students to learn more on this evolving field, but also as inspiration for mobile communication researchers who want to make further innovative strides in the field to mark their legacy in the 5G arena. - Contains tutorials on the basics of mmWave and Massive MIMO - Identifies new 5G networking scenarios, along with design requirements from an architectural and practical perspective - Details the latest updates on the evolution of the mmWave Massive MIMO roadmap, considering future emerging technologies emanating from 3GPP/IEEE - Includes contributions from leading experts in the field in modeling and prototype design for mmWave Massive MIMO design - Presents an ideal reference that not only helps postgraduate students learn more in this evolving field, but also inspires mobile communication researchers towards further innovation
This unique book reviews the future developments of short-range wireless communication technologies Short-Range Wireless Communications: Emerging Technologies and Applications summarizes the outcomes of WWRF Working Group 5, highlighting the latest research results and emerging trends on short-range communications. It contains contributions from leading research groups in academia and industry on future short-range wireless communication systems, in particular 60 GHz communications, ultra-wide band (UWB) communications, UWB radio over optical fiber, and design rules for future cooperative short-range communications systems. Starting from a brief description of state-of-the-art, the authors highlight the perspectives and limits of the technologies and identify where future research work is going to be focused. Key Features: Provides an in-depth coverage of wireless technologies that are about to start an evolution from international standards to mass products, and that will influence the future of short-range communications Offers a unique and invaluable visionary overview from both industry and academia Identifies open research problems, technological challenges, emerging technologies, and fundamental limits Covers ultra-high speed short-range communication in the 60 GHz band, UWB communication, limits and challenges, cooperative aspects in short-range communication and visible light communications, and UWB radio over optical fiber This book will be of interest to research managers, R&D engineers, lecturers and graduate students within the wireless communication research community. Executive managers and communication engineers will also find this reference useful.
To build wireless systems that deliver maximum performance and reliability, engineers need a detailed understanding of radio propagation. Drawing on over 15 years of experience, leading wireless communications researcher Henry Bertoni presents the most complete discussion of techniques for predicting radio propagation ever published. From its insightful introduction on spectrum reuse to its state-of-the-art real-world models for buildings, terrain, and foliage, Radio Propagation for Modern Wireless Systems delivers invaluable information for every wireless system designer. Coverage provides: A door to the understanding of radio wave propagation for the wireless channel. In-depth study of the effects on path loss of buildings, terrain, and foliage. A unified view of key propagation effects in narrowband and wideband systems, including spatial variation, angle of arrival, and delay spread. Readable account of diffraction at building corners, with worked out examples. Never-before-published coverage of mobile-to-mobile path loss in cities. Effective new ray-based models for site-specific predictions and simulation of channel statistics. Simulations of fast fading and shadow loss. From start to finish, Radio Propagation for Modern Wireless Systems presents sophisticated models–and compares their results with actual field measurements. With thorough coverage and extensive examples from both narrowband and wideband systems, it can help any wireless designer deliver more powerful, cost-effective services.
As a result of higher frequencies and increased user mobility, researchers and systems designers are shifting their focus from time-invariant models to channels that vary within a block. Wireless Communications Over Rapidly Time-Varying Channels explains the latest theoretical advances and practical methods to give an understanding of rapidly time varying channels, together with performance trade-offs and potential performance gains, providing the expertise to develop future wireless systems technology. As well as an overview of the issues of developing wireless systems using time-varying channels, the book gives extensive coverage to methods for estimating and equalizing rapidly time-varying channels, including a discussion of training data optimization, as well as providing models and transceiver methods for time-varying ultra-wideband channels. - An introduction to time-varying channel models gives in a nutshell the important issues of developing wireless systems technology using time-varying channels - Extensive coverage of methods for estimating and equalizing rapidly time-varying channels, including a discussion of training data optimization, enables development of high performance wireless systems - Chapters on transceiver design for OFDM and receiver algorithms for MIMO communication channels over time-varying channels, with an emphasis on modern iterative turbo-style architectures, demonstrates how these important technologies can optimize future wireless systems