Download Free Proof Theory For Propositional Fuzzy Logics Book in PDF and EPUB Free Download. You can read online Proof Theory For Propositional Fuzzy Logics and write the review.

Fuzzy logics are many-valued logics that are well suited to reasoning in the context of vagueness. They provide the basis for the wider field of Fuzzy Logic, encompassing diverse areas such as fuzzy control, fuzzy databases, and fuzzy mathematics. This book provides an accessible and up-to-date introduction to this fast-growing and increasingly popular area. It focuses in particular on the development and applications of "proof-theoretic" presentations of fuzzy logics; the result of more than ten years of intensive work by researchers in the area, including the authors. In addition to providing alternative elegant presentations of fuzzy logics, proof-theoretic methods are useful for addressing theoretical problems (including key standard completeness results) and developing efficient deduction and decision algorithms. Proof-theoretic presentations also place fuzzy logics in the broader landscape of non-classical logics, revealing deep relations with other logics studied in Computer Science, Mathematics, and Philosophy. The book builds methodically from the semantic origins of fuzzy logics to proof-theoretic presentations such as Hilbert and Gentzen systems, introducing both theoretical and practical applications of these presentations.
Interest in computer applications has led to a new attitude to applied logic in which researchers tailor a logic in the same way they define a computer language. In response to this attitude, this text for undergraduate and graduate students discusses major algorithmic methodologies, and tableaux and resolution methods. The authors focus on first-order logic, the use of proof theory, and the computer application of automated searches for proofs of mathematical propositions. Annotation copyrighted by Book News, Inc., Portland, OR
Originating as an attempt to provide solid logical foundations for fuzzy set theory, and motivated also by philosophical and computational problems of vagueness and imprecision, Mathematical Fuzzy Logic (MFL) has become a significant subfield of mathematical logic. Research in this area focuses on many-valued logics with linearly ordered truth values and has yielded elegant and deep mathematical theories and challenging problems, thus continuing to attract an ever increasing number of researchers. This handbook provides, through its several volumes, an up-to-date systematic presentation of the best-developed areas of MFL. Its intended audience is researchers working on MFL or related fields, that may use the text as a reference book, and anyone looking for a comprehensive introduction to MFL. This handbook will be useful not only for readers interested in pure mathematical logic, but also for those interested in logical foundations of fuzzy set theory or in a mathematical apparatus suitable for dealing with some philosophical and linguistic issues related to vagueness. This third volume starts with three chapters on semantics of fuzzy logics, namely, on the structure of linearly ordered algebras, on semantic games, and on Ulam-Renyi games; it continues with an introduction to fuzzy logics with evaluated syntax, a survey of fuzzy description logics, and a study of probability on MV-algebras; and it ends with a philosophical chapter on the role of fuzzy logics in theories of vagueness."
This introduction to the basic ideas of structural proof theory contains a thorough discussion and comparison of various types of formalization of first-order logic. Examples are given of several areas of application, namely: the metamathematics of pure first-order logic (intuitionistic as well as classical); the theory of logic programming; category theory; modal logic; linear logic; first-order arithmetic and second-order logic. In each case the aim is to illustrate the methods in relatively simple situations and then apply them elsewhere in much more complex settings. There are numerous exercises throughout the text. In general, the only prerequisite is a standard course in first-order logic, making the book ideal for graduate students and beginning researchers in mathematical logic, theoretical computer science and artificial intelligence. For the new edition, many sections have been rewritten to improve clarity, new sections have been added on cut elimination, and solutions to selected exercises have been included.
This is a monograph about logic. Specifically, it presents the mathe matical theory of the logic of bunched implications, BI: I consider Bl's proof theory, model theory and computation theory. However, the mono graph is also about informatics in a sense which I explain. Specifically, it is about mathematical models of resources and logics for reasoning about resources. I begin with an introduction which presents my (background) view of logic from the point of view of informatics, paying particular attention to three logical topics which have arisen from the development of logic within informatics: • Resources as a basis for semantics; • Proof-search as a basis for reasoning; and • The theory of representation of object-logics in a meta-logic. The ensuing development represents a logical theory which draws upon the mathematical, philosophical and computational aspects of logic. Part I presents the logical theory of propositional BI, together with a computational interpretation. Part II presents a corresponding devel opment for predicate BI. In both parts, I develop proof-, model- and type-theoretic analyses. I also provide semantically-motivated compu tational perspectives, so beginning a mathematical theory of resources. I have not included any analysis, beyond conjecture, of properties such as decidability, finite models, games or complexity. I prefer to leave these matters to other occasions, perhaps in broader contexts.
Description Logics (DLs) is a family of formalisms used to represent knowledge of a domain. They are equipped with a formal logic-based semantics. Knowledge representation systems based on description logics provide various inference capabilities that deduce implicit knowledge from the explicitly represented knowledge. A Proof Theory for Description Logics introduces Sequent Calculi and Natural Deduction for some DLs (ALC, ALCQ). Cut-elimination and Normalization are proved for the calculi. The author argues that such systems can improve the extraction of computational content from DLs proofs for explanation purposes.
Fuzzy logic in narrow sense is a promising new chapter of formal logic whose basic ideas were formulated by Lotfi Zadeh (see Zadeh [1975]a). The aim of this theory is to formalize the "approximate reasoning" we use in everyday life, the object of investigation being the human aptitude to manage vague properties (as, for example, "beautiful", "small", "plausible", "believable", etc. ) that by their own nature can be satisfied to a degree different from 0 (false) and I (true). It is worth noting that the traditional deductive framework in many-valued logic is different from the one adopted in this book for fuzzy logic: in the former logics one always uses a "crisp" deduction apparatus, producing crisp sets of formulas, the formulas that are considered logically valid. By contrast, fuzzy logical deductive machinery is devised to produce a fuzzy set of formulas (the theorems) from a fuzzy set of formulas (the hypotheses). Approximate reasoning has generated a very interesting literature in recent years. However, in spite of several basic results, in our opinion, we are still far from a satisfactory setting of this very hard and mysterious subject. The aim of this book is to furnish some theoretical devices and to sketch a general framework for fuzzy logic. This is also in accordance with the non Fregean attitude of the book.
The term "fuzzy logic," as it is understood in this book, stands for all aspects of representing and manipulating knowledge based on the rejection of the most fundamental principle of classical logic---the principle of bivalence. According to this principle, each declarative sentence is required to be either true or false. In fuzzy logic, these classical truth values are not abandoned. However, additional, intermediate truth values between true and false are allowed, which are interpreted as degrees of truth. This opens a new way of thinking---thinking in terms of degrees rather than absolutes. For example, it leads to the definition of a new kind of sets, referred to as fuzzy sets, in which membership is a matter of degree. The book examines the genesis and development of fuzzy logic. It surveys the prehistory of fuzzy logic and inspects circumstances that eventually lead to the emergence of fuzzy logic. The book explores in detail the development of propositional, predicate, and other calculi that admit degrees of truth, which are known as fuzzy logic in the narrow sense. Fuzzy logic in the broad sense, whose primary aim is to utilize degrees of truth for emulating common-sense human reasoning in natural language, is scrutinized as well. The book also examines principles for developing mathematics based on fuzzy logic and provides overviews of areas in which this has been done most effectively. It also presents a detailed survey of established and prospective applications of fuzzy logic in various areas of human affairs, and provides an assessment of the significance of fuzzy logic as a new paradigm.
In the area of mathematical logic, a great deal of attention is now being devoted to the study of nonclassical logics. This book intends to present the most important methods of proof theory in intuitionistic logic and to acquaint the reader with the principal axiomatic theories based on intuitionistic logic.