Download Free Promising Practices In Mathematics Education Book in PDF and EPUB Free Download. You can read online Promising Practices In Mathematics Education and write the review.

Includes 66 promising practices in math. and science education developed by the 10 regional educational laboratories funded by the U.S. Dept. of Education.
Each teacher and student brings many identities to the classroom. What is their impact on the student’s learning and the teacher’s teaching of mathematics? This book invites K–8 teachers to reflect on their own and their students’ multiple identities. Rich possibilities for learning result when teachers draw on these identities to offer high-quality, equity-based teaching to all students. Reflecting on identity and re-envisioning learning and teaching through this lens especially benefits students who have been marginalized by race, class, ethnicity, or gender. The authors encourage teachers to reframe instruction by using five equity-based mathematics teaching practices: Going deep with mathematics; leveraging multiple mathematical competencies; affirming mathematics learners’ identities; challenging spaces of marginality; and drawing on multiple resources of knowledge. Special features of the book: Classroom vignettes, lessons, and assessments showing equity-based practices Tools for teachers’ self-reflection and professional development, including a mathematics learning autobiography and teacher identity activity at nctm.org/more4u Suggestions for partnering with parents and community organisations End-of-chapter discussion questions
This text offers guidance to teachers, mathematics coaches, administrators, parents, and policymakers. This book: provides a research-based description of eight essential mathematics teaching practices ; describes the conditions, structures, and policies that must support the teaching practices ; builds on NCTM's Principles and Standards for School Mathematics and supports implementation of the Common Core State Standards for Mathematics to attain much higher levels of mathematics achievement for all students ; identifies obstacles, unproductive and productive beliefs, and key actions that must be understood, acknowledged, and addressed by all stakeholders ; encourages teachers of mathematics to engage students in mathematical thinking, reasoning, and sense making to significantly strengthen teaching and learning.
Numerous teaching, learning, assessment, and institutional innovations in undergraduate science, technology, engineering, and mathematics (STEM) education have emerged in the past decade. Because virtually all of these innovations have been developed independently of one another, their goals and purposes vary widely. Some focus on making science accessible and meaningful to the vast majority of students who will not pursue STEM majors or careers; others aim to increase the diversity of students who enroll and succeed in STEM courses and programs; still other efforts focus on reforming the overall curriculum in specific disciplines. In addition to this variation in focus, these innovations have been implemented at scales that range from individual classrooms to entire departments or institutions. By 2008, partly because of this wide variability, it was apparent that little was known about the feasibility of replicating individual innovations or about their potential for broader impact beyond the specific contexts in which they were created. The research base on innovations in undergraduate STEM education was expanding rapidly, but the process of synthesizing that knowledge base had not yet begun. If future investments were to be informed by the past, then the field clearly needed a retrospective look at the ways in which earlier innovations had influenced undergraduate STEM education. To address this need, the National Research Council (NRC) convened two public workshops to examine the impact and effectiveness of selected STEM undergraduate education innovations. This volume summarizes the workshops, which addressed such topics as the link between learning goals and evidence; promising practices at the individual faculty and institutional levels; classroom-based promising practices; and professional development for graduate students, new faculty, and veteran faculty. The workshops concluded with a broader examination of the barriers and opportunities associated with systemic change.
This publication is sponsored ... by the U.S. Dept. of Education, Office of Educational Research and Improvement, under contract numbers: RP9 1002001 ... [through] RP9 1002010.