Download Free Project Development In The Solar Industry Book in PDF and EPUB Free Download. You can read online Project Development In The Solar Industry and write the review.

This book provides an extensive overview of utility scale solar project development and the various tasks required to bring large solar power plants from plans to realities. The various topics have been organized and presented in a way to clearly define important development fundamentals including basic business and legal considerations. The reader is also guided through the more complex aspects of renewable energy development such as how to choose the ideal project site. Further, while the book is appropriate for a cover to cover read-through it is also designed to be an excellent go-to reference, a HANDBOOK FOR RENEWABLE ENERGY DEVELOPMENT. Edited by: Albie Fong and Jesse Tippett with contributions from: Arturo Alvarez, Jeffery Atkin, William DuFour III, Perry Fontana, William Hugron, Jason Keller, Tyler M. Kropf, Michael Mendelsohn, Brett Prior, Scott Reynolds, Pilar Rodriguez-Ibáñez, Katherine Ryzhaya Poster and Alfonso Tovar ELECTRONIC ENHANCEMENTS The book’s companion website http://www.solarbookteam.com provides contact information for all authors to the book and access to the key resources highlighted in the text. This tailored media platform provides supplemental and exclusive information that is up-to-date with the present state of the solar industry.
This book written by practicing experts in the solar renewable energy field enables readers to understand both renewable project development and the primary stumbling blocks in the process. It also contains a detailed description of all renewable energy technologies, the development activities required, and an overview to software & mapping tools commonly used in the industry. The book will not only serve as a guide to project developers but it will also assist policy makers and stakeholders in understanding the process involved to turn the sun into electricity and the reasons for supporting solar.
This is the first and probably the only book devoted to utility-scale solar power – perhaps the fastest-growing sector of the global energy market. Philip Wolfe’s book describes the development and operation of large-scale solar power stations, and will interest all those who want to understand how these multi-million dollar projects are designed, structured, financed, constructed and maintained. It contains case studies of the Waldpolenz Energy Park, Germany, Lopburi Solar Plant in Thailand and the Topaz Solar Farm in California. Also included are interviews from leading figures in the PV industry. It shows the state of the world market and links to an online resource that continues to track the explosive growth of the sector. The book is arranged in three sections: A description of solar projects in context, and how they are undertaken. Chapters on developing and structuring projects; siting, consenting and connection issues; building and operating solar plants; design and technology basics; economies of solar photovoltaics. The second section reviews individual aspects of the project development and operational process in more detail. In particular it advises on strategies to manage technology, commercial, regulatory and implementation risks. These are supported by a comprehensive reference section, including case studies and overviews of key parameters applicable in different parts of the world. Supported by figures and photographs, this book is for anyone wanting to master the commercial, professional, financial, engineering or political aspects of developing multi-mega-watt solar PV projects in a mainstream power market. It is a ‘user manual’ to accompany a sector which by 2015 had surpassed a value of $100 billion.
What is project finance? What makes project or structured finance so relevant for large renewable energy infrastructure? Which vocabulary do I need to know in order to speak the same language during meetings with lawyers, investors, bankers and engineers? These questions and many more are answered throughout this book, offering real world examples to bridge the gap between theory and practice. The book details the role of each stakeholder in the development of renewable energy projects, the interconnection between all the agreements, the financial process from fundraising to financial close, the processes of due diligence, risk analysis, project investment valuation and much more. It also provides with an introduction to Portfolio Management using renewable energy assets and an explanation of the role of Climate Finance in green energy investments. The commented glossary enables readers to unpick the jargon used in project finance for renewable energy, and the numerous creative figures and comprehensive tables aid with understanding. Offering a complete picture of the discipline, Introduction to Project Finance in Renewable Energy Infrastructure will be of value to professionals, engineers and academics alike interested in understanding the process and components of project finance in renewable energy infrastructures, in both private and public-private contexts.
Solar Energy is an authoritative reference on the design of solar energy systems in building projects, with applications, operating principles, and simple tools for the construction, engineering, and design professional. The book simplifies the solar design and engineering process, providing sample documentation and special tools that provide all the information needed for the complete design of a solar energy system for buildings to enable mainstream MEP and design firms, and not just solar energy specialists, to meet the growing demand for solar energy systems in building projects.
This study presents options to fully unlock the world’s vast solar PV potential over the period until 2050. It builds on IRENA’s global roadmap to scale up renewables and meet climate goals.
Openness and competition sparked major advances in Chinese industry. Recent policy reversals emphasizing indigenous innovation seem likely to disappoint.
The world's deserts are sufficiently large that, in theory, covering a fraction of their landmass with PV systems could generate many times the current primary global energy supply. In three parts, this study details the background and concept of VLS-PV, maps out a development path towards the realization of VLS-PV systems and provides firm recommendations to achieve long-term targets. This represents the first study to provide a concrete set of answers to the questions that must be addressed in order to secure and exploit the potential for VLS-PV technology and its global benefits.
The Definitive Guide to Large-Scale, Grid-Connected Solar Power System Design and Construction This GreenSource book provides comprehensive engineering design and construction guidelines for large-scale solar power system projects. Proven design methodologies are detailed installation diagrams are included in this practical resource. Large-Scale Solar Power System Design offers complete coverage of solar power system technologies and components, planning, cost estimates, financing, project management, safety, and testing. This authoritative guide fully addresses the complex technical and management issues associated with large-scale, grid-connected solar power system implementations. COVERAGE INCLUDES: Solar power system technologies, including photovoltaic and thin-film solar cells Solar power system physics Photovoltaic power system feasibility study Solar power system costing Solar power system design Large-scale solar power system construction Concentrator photovoltaic systems Solar power system project management Smart-grid systems Solar thermal power Solar power financing and feed-in tariff programs
Brings together disparate conversations about wildlife conservation and renewable energy, suggesting ways these two critical fields can work hand in hand. Renewable energy is often termed simply "green energy," but its effects on wildlife and other forms of biodiversity can be quite complex. While capturing renewable resources like wind, solar, and energy from biomass can require more land than fossil fuel production, potentially displacing wildlife habitat, renewable energy infrastructure can also create habitat and promote species health when thoughtfully implemented. The authors of Renewable Energy and Wildlife Conservation argue that in order to achieve a balanced plan for addressing these two crucially important sustainability issues, our actions at the nexus of these fields must be directed by current scientific information related to the ecological effects of renewable energy production. Synthesizing an extensive, rapidly growing base of research and insights from practitioners into a single, comprehensive resource, contributors to this volume • describe processes to generate renewable energy, focusing on the Big Four renewables—wind, bioenergy, solar energy, and hydroelectric power • review the documented effects of renewable energy production on wildlife and wildlife habitats • consider current and future policy directives, suggesting ways industrial-scale renewables production can be developed to minimize harm to wildlife populations • explain recent advances in renewable power technologies • identify urgent research needs at the intersection of renewables and wildlife conservation Relevant to policy makers and industry professionals—many of whom believe renewables are the best path forward as the world seeks to meet its expanding energy needs—and wildlife conservationists—many of whom are alarmed at the rate of renewables-related habitat conversion—this detailed book culminates with a chapter underscoring emerging opportunities in renewable energy ecology. Contributors: Edward B. Arnett, Brian B. Boroski, Regan Dohm, David Drake, Sarah R. Fritts, Rachel Greene, Steven M. Grodsky, Amanda M. Hale, Cris D. Hein, Rebecca R. Hernandez, Jessica A. Homyack, Henriette I. Jager, Nicole M. Korfanta, James A. Martin, Christopher E. Moorman, Clint Otto, Christine A. Ribic, Susan P. Rupp, Jake Verschuyl, Lindsay M. Wickman, T. Bently Wigley, Victoria H. Zero