Download Free Progress In Microalgae Research Book in PDF and EPUB Free Download. You can read online Progress In Microalgae Research and write the review.

Progress in Microalgae Research - A Path for Shaping Sustainable Futures consolidates the latest research, developments, and advances in the field of microalgae biotechnology. The book’s chapters take a close look at and highlight the wide commercial potential of microalgae-based processes and products. This book is a useful resource for researchers and academic and industry professionals in the field of microalgae biotechnology.
Microalgal Biotechnology presents an authoritative and comprehensive overview of the microalgae-based processes and products. Divided into 10 discreet chapters, the book covers topics on applied technology of microalgae. Microalgal Biotechnology provides an insight into future developments in each field and extensive bibliography. It will be an essential resource for researchers and academic and industry professionals in the microalgae biotechnology field.
The Handbook of Microalgae-based Processes and Products provides a complete overview of all aspects involved in the production and utilization of microalgae resources at commercial scale. Divided into four parts (fundamentals, microalgae-based processes, microalgae-based products, and engineering approaches applied to microalgal processes and products), the book explores the microbiology and metabolic aspects of microalgae, microalgal production systems, wastewater treatment based in microalgae, CO2 capture using microalgae, microalgae harvesting techniques, and extraction and purification of biomolecules from microalgae. It covers the largest number of microalgal products of commercial relevance, including biogas, biodiesel, bioethanol, biohydrogen, single-cell protein, single-cell oil, biofertilizers, pigments, polyunsaturated fatty acids, bioactive proteins, peptides and amino acids, bioactive polysaccharides, sterols, bioplastics, UV-screening compounds, and volatile organic compounds. Moreover, it presents and discusses the available engineering tools applied to microalgae biotechnology, such as process integration, process intensification, and techno-economic analysis applied to microalgal processes and products, microalgal biorefineries, life cycle assessment, and exergy analysis of microalgae-based processes and products. The coverage of a broad range of potential microalgae processes and products in a single volume makes this handbook an indispensable reference for engineering researchers in academia and industry in the fields of bioenergy, sustainable development, and high-value compounds from biomass, as well as graduate students exploring those areas. Engineering professionals in bio-based industries will also find valuable information here when planning or implementing the use of microalgal technologies. - Covers theoretical background information and results of recent research. - Discusses all commercially relevant microalgae-based processes and products. - Explores the main emerging engineering tools applied to microalgae processes, including techno-economic analysis, process integration, process intensification, life cycle assessment, and exergy analyses.
This book addresses microalgae, which represent a very promising biomass resource for wastewater treatment and producing biofuels. Accordingly, microalgae are also an expanding sector in biofuels and wastewater treatment, as can be seen in several high-profile start-ups from around the globe, including Solix Biofuels, Craig Venter’s Synthetic Genomics, PetroSun, Chevron Corporation, ENN Group etc. In addition, a number of recent studies and patent applications have confirmed the value of modern microalgae for biofuels production and wastewater treatment systems. However, substantial inconsistencies have been observed in terms of system boundaries, scope, the cultivation of microalgae and oil extraction systems, production costs and economic viability, cost-lowering components, etc. Moreover, the downstream technologies and core principles involved in liquid fuel extraction from microalgae cells are still in their early stages, and not always adequate for industrial production. Accordingly, multilateral co-operation between universities, research institutes, governments, stakeholders and researchers is called for in order to make microalgae biofuels economical. Responding to this challenge, the book begins with a general introduction to microalgae and the algae industry, and subsequently discusses all major aspects of microalgal biotechnology, from strain isolation and robust strain development, to biofuel development, refinement and wastewater treatment.
Microalgae Cultivation for Biofuels Production explores the technological opportunities and challenges involved in producing economically competitive algal-derived biofuel. The book discusses efficient methods for cultivation, improvement of harvesting and lipid extraction techniques, optimization of conversion/production processes of fuels and co-products, the integration of microalgae biorefineries to several industries, environmental resilience by microalgae, and a techno-economic and lifecycle analysis of the production chain to gain maximum benefits from microalgae biorefineries. - Provides an overview of the whole production chain of microalgal biofuels and other bioproducts - Presents an analysis of the economic and sustainability aspects of the production chain - Examines the integration of microalgae biorefineries into several industries
Bioenergy Research: Advances and Applications brings biology and engineering together to address the challenges of future energy needs. The book consolidates the most recent research on current technologies, concepts, and commercial developments in various types of widely used biofuels and integrated biorefineries, across the disciplines of biochemistry, biotechnology, phytology, and microbiology. All the chapters in the book are derived from international scientific experts in their respective research areas. They provide you with clear and concise information on both standard and more recent bioenergy production methods, including hydrolysis and microbial fermentation. Chapters are also designed to facilitate early stage researchers, and enables you to easily grasp the concepts, methodologies and application of bioenergy technologies. Each chapter in the book describes the merits and drawbacks of each technology as well as its usefulness. The book provides information on recent approaches to graduates, post-graduates, researchers and practitioners studying and working in field of the bioenergy. It is an invaluable information resource on biomass-based biofuels for fundamental and applied research, catering to researchers in the areas of bio-hydrogen, bioethanol, bio-methane and biorefineries, and the use of microbial processes in the conversion of biomass into biofuels. - Reviews all existing and promising technologies for production of advanced biofuels in addition to bioenergy policies and research funding - Cutting-edge research concepts for biofuels production using biological and biochemical routes, including microbial fuel cells - Includes production methods and conversion processes for all types of biofuels, including bioethanol and biohydrogen, and outlines the pros and cons of each
Microalgae are sunlight driven single-cell factories for protein, lipids, carbohydrates, pigments, vitamins and minerals, etc. Microalgae have long been used as health food and additives for human consumption, as well as animal feed in aquaculture. Microalgae also prove to be beneficial to environmental cleanup such as bioremediation of industrial flue gases and waste water. Recently, owing to the demand of renewable energy, microalgal biofuels, biodiesel in particular, haveattracted unprecedentedly interest. Also, microalgae emerge as promising hosts for the expression of recombinant proteins.Nevertheless, there are still tremendous challenges involved in the algae production pipeline such as strain improvement, mass cultivation, harvest and drying, biomass disruption, and recycling of water and nutrients, which have been impeding commercial application of microalgae in many different ways. The great opportunities lying ahead will be the innovations and breakthroughs occurred in microalgal biotechnology. This book brings together recent advances in microalgal biotechnology, dedicated to both the understanding of the fundamentals and development of industry-oriented technologies.
Algal Green Chemistry: Recent Progress in Biotechnology presents emerging information on green algal technology for the production of diverse chemicals, metabolites, and other products of commercial value. This book describes and emphasizes the emerging information on green algal technology, with a special emphasis on the production of diverse chemicals, metabolites, and products from algae and cyanobacteria. Topics featured in the book are exceedingly valuable for researchers and scientists in the field of algal green chemistry, with many not covered in current academic studies. It is a unique source of information for scientists, researchers, and biotechnologists who are looking for the development of new technologies in bioremediation, eco-friendly and alternative biofuels, biofertilizers, biogenic biocides, bioplastics, cosmeceuticals, sunscreens, antibiotics, anti-aging, and an array of other biotechnologically important chemicals for human life and their contiguous environment. This book is a great asset for students, researchers, and biotechnologists. - Discusses high-value chemicals from algae and their industrial applications - Explores the potential of algae as a renewable source of bioenergy and biofuels - Considers the potential of algae as feed and super-food - Presents the role of triggers and cues to algal metabolic pathways - Includes developments in the use of algae as bio-filters
This edited volume focuses on comprehensive state-of-the-art information about the practical aspects of cultivation, harvesting, biomass processing and biofuel production from algae. Chapters cover topics such as synthetic ecological engineering approaches towards sustainable production of biofuel feedstock, and algal biofuel production processes using wastewater. Readers will also discover more about the role of biotechnological engineering in improving ecophysiology, biomass and lipid yields. Particular attention is given to opportunities of commercialization of algal biofuels that provides a realistic assessment of various techno-economical aspects of pilot scale algal biofuel production. The authors also explore the pre-treatment of biomass, catalytic conversion of algal lipids and hydrothermal liquefaction with the biorefinery approach in detail. In a nut shell, this volume will provide a wealth of information based on a realistic evaluation of contemporary developments in algal biofuel research with an emphasis on pilot scale studies. Researchers studying and working in the areas of environmental science, biotechnology, genetic engineering and biochemistry will find this work instructive and informative.
Microalgae are a group of single-celled, photosynthetic microorganisms. They are of great commercial interest as they are capable of producing biomass (with a vast array of biochemical) using sunlight, CO2 and various other naturally occurring nutrients. Correctly utilised, they have the potential to provide sustainable supply of commercially relevant biochemicals, biofuels, nutraceuticals, food and feed supplements. The field of microalgal biotechnology is a fast-paced area of research, with technologies coming ever closer to commercial viability. Microalgal Biotechnology consolidates the latest research in the field together with a look at market potential and policy considerations. Highlighting the huge potential of microalgae as commercial commodities, it covers progress on various fronts including; bio-refinery and its technological challenges, genetic engineering, biosafety and regulatory issues, open and closed photo-bioreactors for biomass production, market space and sustainability for algal products. This book is a useful resource for researchers, academicians, postgraduate students, industries, policy makers and anyone interested in the status and future possibilities of microalgae commercialisation.