Download Free Progress In Low Temperature Physics Book in PDF and EPUB Free Download. You can read online Progress In Low Temperature Physics and write the review.

Progress in Low Temperature Physics: Quantum Turbulence presents seven review articles on the recent developments on quantum turbulence. Turbulence has been a great mystery in natural science and technology for more than 500 years since the time of Leonardo da Vinci. Recently turbulence in quantum systems at low temperatures has developed into a new research field. Quantum turbulence is comprised of quantized vortices, realized in superfluid helium and quantum gases of cold atoms. Some of the important topics include energy spectra, vibrating structures, and visualization techniques. The understanding of these remarkable systems can have an impact on the general field of turbulence and will be of broad interest to scientists and students in low temperature physics, hydrodynamics and engineering. - Key subjects covered: Energy spectra in quantum turbulence, Turbulent dynamics in rotating helium superfluids: a comparison of 3He-B and 4He-II, Quantum turbulence in superfluid 3He at very low temperatures, The use of vibrating structures in the study of quantum turbulence, Visualization of quantum turbulence, Capillary turbulence on the surface of quantum fluids, Quantized vortices in atomic Bose-Einstein condensates - Crucial information for all experimenters in low temperature physics
As the growing number of conference proceedings, preprints, periodicals and popular journal articles are being joined by various electronic forms of dissemination of research, the series Progress in Low Temperature Physics assumes a particular responsibility in providing excellent reviews, guiding the reading of the literature and providing direction for future research possibilities. In this most recent volume, the main theme is research on superfluid and adsorbed phases of helium.In five chapters the following topics are dealt with. Chapter one is a review of one of the essential characteristics of superfluid 4He, the Landau critical velocity. Chapter two reviews the amazing properties of coherent spin dynamics in superfluid 3He. The next chapter examines a unique situation with a number of thermodynamic transitions between superfluid states and discusses the current experimental and theoretical situation. Properties of phases of 3He adsorbed on graphite are discussed in the following chapter, and in a complementary final chapter a review is presented on the properties of multilayer 3He-4He mixture films.
Presents experiment, theory and technology in a unified manner. Contains numerous illustrations, tables and references as well as carefully selected problems for students. Surveys the fascinating historical development of the field.
“A lovely, fascinating book, which brings science to life.” —Alan Lightman Combining science, history, and adventure, Tom Shachtman “holds the reader’s attention with the skill of a novelist” as he chronicles the story of humans’ four-centuries-long quest to master the secrets of cold (Scientific American). “A disarming portrait of an exquisite, ferocious, world-ending extreme,” Absolute Zero and the Conquest of Cold demonstrates how temperature science produced astonishing scientific insights and applications that have revolutionized civilization (Kirkus Reviews). It also illustrates how scientific advancement, fueled by fortuitous discoveries and the efforts of determined individuals, has allowed people to adapt to—and change—the environments in which they live and work, shaping man’s very understanding of, and relationship, with the world. This “truly wonderful book” was adapted into an acclaimed documentary underwritten by the National Science Foundation and the Alfred P. Sloan Foundation, directed by British Emmy Award winner David Dugan, and aired on the BBC and PBS’s Nova in 2008 (Library Journal). “An absorbing account to chill out with.” —Booklist
Low Temperature Electronics: Physics, Devices, Circuits, and Applications summarizes the recent advances in cryoelectronics starting from the fundamentals in physics and semiconductor devices to electronic systems, hybrid superconductor-semiconductor technologies, photonic devices, cryocoolers and thermal management. Furthermore, this book provides an exploration of the currently available theory, research, and technologies related to cryoelectronics, including treatment of the solid state physical properties of the materials used in these systems. Current applications are found in infrared systems, satellite communications and medical equipment. There are opportunities to expand in newer fields such as wireless and mobile communications, computers, and measurement and scientific equipment. Low temperature operations can offer certain advantages such as higher operational speeds, lower power dissipation, shorter signal transmission times, higher semiconductor and metal thermal conductivities, and improved digital and analog circuit performance.The computer, telecommunication, and cellular phone market is pushing the semiconductor industry towards the development of very aggressive device and integrated circuit fabrication technologies. This is taking these technologies towards the physical miniaturization limit, where quantum effects and fabrication costs are becoming a technological and economical barrier for further development. In view of these limitations, operation of semiconductor devices and circuits at low temperature (cryogenic temperature) is studied in this book.* It is a book intended for a wide audience: students, scientists, technology development engineers, private companies, universities, etc.* It contains information which is for the first time available as an all-in-one source; Interdisciplinary material is arranged and made compatible in this book* It is a must as reference source