Download Free Progress In Artificial Intelligence And Pattern Recognition Book in PDF and EPUB Free Download. You can read online Progress In Artificial Intelligence And Pattern Recognition and write the review.

This book constitutes the refereed proceedings of the 8th International Workshop on Artificial Intelligence and Pattern Recognition, IWAIPR 2023, held in Varadero, Cuba, in October 2023. The 68 papers presented in the proceedings set were carefully reviewed and selected from 38 submissions. The IWAIPR conference aims to provide a leading international forum to promote and disseminate ongoing research into mathematical methods of computing techniques for Artifical Intelligence and Pattern Recognition.
This book constitutes the refereed proceedings of the 20th Iberoamerican Congress on Pattern Recognition, CIARP 2015, held in Montevideo, Uruguay, in November 2015. The 95 papers presented were carefully reviewed and selected from 185 submissions. The papers are organized in topical sections on applications on pattern recognition; biometrics; computer vision; gesture recognition; image classification and retrieval; image coding, processing and analysis; segmentation, analysis of shape and texture; signals analysis and processing; theory of pattern recognition; video analysis, segmentation and tracking.
This book constitutes the refereed proceedings of the 7th International Workshop on Artificial Intelligence and Pattern Recognition, IWAIPR 2021, held in Havana, Cuba, in October 2021. The 42 full papers presented were carefully reviewed and selected from 73 submissions. The papers promote and disseminate ongoing research on mathematical methods and computing techniques for artificial intelligence and pattern recognition, in particular in bioinformatics, cognitive and humanoid vision, computer vision, image analysis and intelligent data analysis.
This book presents a collection of high-quality research papers accepted to multi-conference consisting of International Conference on Image Processing and Communications (IP&C 2021), International Conference on Computer Recognition Systems (CORES 2021), International Conference on Advanced Computer Systems (ACS 2021) held jointly in Bydgoszcz, Poland (virtually), in June 2021. The accepted papers address current computer science and computer systems-related technological challenges and solutions, as well as many practical applications and results. The first part of the book deals with advances in pattern recognition and classifiers, the second part is devoted to image processing and computer vision, while the third part addresses practical applications of computer recognition systems. Machine learning solutions for security and networks are tackled in part four of the book, while the last part collects papers on progress in advanced computer systems. We believe this book will be interesting for researchers and practitioners in many fields of computer science and IT applications.
Patterns can be any number of items that occur repeatedly, whether in the behaviour of animals, humans, traffic, or even in the appearance of a design. As technologies continue to advance, recognizing, mimicking, and responding to all types of patterns becomes more precise. Pattern Recognition and Classification in Time Series Data focuses on intelligent methods and techniques for recognizing and storing dynamic patterns. Emphasizing topics related to artificial intelligence, pattern management, and algorithm development, in addition to practical examples and applications, this publication is an essential reference source for graduate students, researchers, and professionals in a variety of computer-related disciplines.
This book is to chart the progress in applying machine learning, including deep learning, to a broad range of image analysis and pattern recognition problems and applications. In this book, we have assembled original research articles making unique contributions to the theory, methodology and applications of machine learning in image analysis and pattern recognition.
Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
This book constitutes the refereed proceedings of the 29th Australasian Joint Conference on Artificial Intelligence, AI 2016, held in Hobart, TAS, Australia, in December 2016. The 40 full papers and 18 short papers presented together with 8 invited short papers were carefully reviewed and selected from 121 submissions. The papers are organized in topical sections on agents and multiagent systems; AI applications and innovations; big data; constraint satisfaction, search and optimisation; knowledge representation and reasoning; machine learning and data mining; social intelligence; and text mining and NLP. The proceedings also contains 2 contributions of the AI 2016 doctoral consortium and 6 contributions of the SMA 2016.