Download Free Production Planning By Mixed Integer Programming Book in PDF and EPUB Free Download. You can read online Production Planning By Mixed Integer Programming and write the review.

This textbook provides a comprehensive modeling, reformulation and optimization approach for solving production planning and supply chain planning problems, covering topics from a basic introduction to planning systems, mixed integer programming (MIP) models and algorithms through the advanced description of mathematical results in polyhedral combinatorics required to solve these problems. Based on twenty years worth of research in which the authors have played a significant role, the book addresses real life industrial production planning problems (involving complex production structures with multiple production stages) using MIP modeling and reformulation approach. The book provides an introduction to MIP modeling and to planning systems, a unique collection of reformulation results, and an easy to use problem-solving library. This approach is demonstrated through a series of real life case studies, exercises and detailed illustrations. Review by Jakub Marecek (Computer Journal) The emphasis put on mixed integer rounding and mixing sets, heuristics in-built in general purpose integer programming solvers, as well as on decompositions and heuristics using integer programming should be praised... There is no doubt that this volume offers the present best introduction to integer programming formulations of lotsizing problems, encountered in production planning. (2007)
This textbook provides a comprehensive modeling, reformulation and optimization approach for solving production planning and supply chain planning problems, covering topics from a basic introduction to planning systems, mixed integer programming (MIP) models and algorithms through the advanced description of mathematical results in polyhedral combinatorics required to solve these problems. Based on twenty years worth of research in which the authors have played a significant role, the book addresses real life industrial production planning problems (involving complex production structures with multiple production stages) using MIP modeling and reformulation approach. The book provides an introduction to MIP modeling and to planning systems, a unique collection of reformulation results, and an easy to use problem-solving library. This approach is demonstrated through a series of real life case studies, exercises and detailed illustrations. Review by Jakub Marecek (Computer Journal) The emphasis put on mixed integer rounding and mixing sets, heuristics in-built in general purpose integer programming solvers, as well as on decompositions and heuristics using integer programming should be praised... There is no doubt that this volume offers the present best introduction to integer programming formulations of lotsizing problems, encountered in production planning. (2007)
This textbook provides a comprehensive modeling, reformulation and optimization approach for solving production planning and supply chain planning problems, covering topics from a basic introduction to planning systems, mixed integer programming (MIP) models and algorithms through the advanced description of mathematical results in polyhedral combinatorics required to solve these problems. Based on twenty years worth of research in which the authors have played a significant role, the book addresses real life industrial production planning problems (involving complex production structures with multiple production stages) using MIP modeling and reformulation approach. The book provides an introduction to MIP modeling and to planning systems, a unique collection of reformulation results, and an easy to use problem-solving library. This approach is demonstrated through a series of real life case studies, exercises and detailed illustrations. Review by Jakub Marecek (Computer Journal) The emphasis put on mixed integer rounding and mixing sets, heuristics in-built in general purpose integer programming solvers, as well as on decompositions and heuristics using integer programming should be praised... There is no doubt that this volume offers the present best introduction to integer programming formulations of lotsizing problems, encountered in production planning. (2007)
Understand common scheduling as well as other advanced operational problems with this valuable reference from a recognized leader in the field. Beginning with basic principles and an overview of linear and mixed-integer programming, this unified treatment introduces the fundamental ideas underpinning most modeling approaches, and will allow you to easily develop your own models. With more than 150 figures, the basic concepts and ideas behind the development of different approaches are clearly illustrated. Addresses a wide range of problems arising in diverse industrial sectors, from oil and gas to fine chemicals, and from commodity chemicals to food manufacturing. A perfect resource for engineering and computer science students, researchers working in the area, and industrial practitioners.
A unified, systematic approach to applying mixed integer programming solutions to integrated scheduling in customer-driven supply chains Supply chain management is a rapidly developing field, and the recent improvements in modeling, preprocessing, solution algorithms, and mixed integer programming (MIP) software have made it possible to solve large-scale MIP models of scheduling problems, especially integrated scheduling in supply chains. Featuring a unified and systematic presentation, Scheduling in Supply Chains Using Mixed Integer Programming provides state-of-the-art MIP modeling and solutions approaches, equipping readers with the knowledge and tools to model and solve real-world supply chain scheduling problems in make-to-order manufacturing. Drawing upon the author's own research, the book explores MIP approaches and examples-which are modeled on actual supply chain scheduling problems in high-tech industries-in three comprehensive sections: Short-Term Scheduling in Supply Chains presents various MIP models and provides heuristic algorithms for scheduling flexible flow shops and surface mount technology lines, balancing and scheduling of Flexible Assembly Lines, and loading and scheduling of Flexible Assembly Systems Medium-Term Scheduling in Supply Chains outlines MIP models and MIP-based heuristic algorithms for supplier selection and order allocation, customer order acceptance and due date setting, material supply scheduling, and medium-term scheduling and rescheduling of customer orders in a make-to-order discrete manufacturing environment Coordinated Scheduling in Supply Chains explores coordinated scheduling of manufacturing and supply of parts as well as the assembly of products in supply chains with a single producer and single or multiple suppliers; MIP models for a single- or multiple-objective decision making are also provided Two main decision-making approaches are discussed and compared throughout. The integrated (simultaneous) approach, in which all required decisions are made simultaneously using complex, monolithic MIP models; and the hierarchical (sequential) approach, in which the required decisions are made successively using hierarchies of simpler and smaller-sized MIP models. Throughout the book, the author provides insight on the presented modeling tools using AMPL® modeling language and CPLEX solver. Scheduling in Supply Chains Using Mixed Integer Programming is a comprehensive resource for practitioners and researchers working in supply chain planning, scheduling, and management. The book is also appropriate for graduate- and PhD-level courses on supply chains for students majoring in management science, industrial engineering, operations research, applied mathematics, and computer science.
A reference for those working at the interface of operations planning and optimization modeling, Operations Planning: Mixed Integer Optimization Models blends essential theory and powerful approaches to practical operations planning problems. It presents a set of classical optimization models with widespread application in operations planning. The
This two-volume set presents selected and revised papers from the 10th International Conference of Production Research - Americas, ICPR-Americas 2020, held in Bahía Blanca, Argentina, in December 2020. Due to the COVID-19 pandemic the conference was held in a fully virtual format. The 41 full papers and 11 short papers were thoroughly reviewed and selected from 275 submissions. They are organized in topical sections on optimization; metaheuristics and algorithms; industry 4.0 and cyber-physical systems; smart city; intelligent systems and decision sciences; simulation; machine learning and big data.
An accessible treatment of the modeling and solution of integer programming problems, featuring modern applications and software In order to fully comprehend the algorithms associated with integer programming, it is important to understand not only how algorithms work, but also why they work. Applied Integer Programming features a unique emphasis on this point, focusing on problem modeling and solution using commercial software. Taking an application-oriented approach, this book addresses the art and science of mathematical modeling related to the mixed integer programming (MIP) framework and discusses the algorithms and associated practices that enable those models to be solved most efficiently. The book begins with coverage of successful applications, systematic modeling procedures, typical model types, transformation of non-MIP models, combinatorial optimization problem models, and automatic preprocessing to obtain a better formulation. Subsequent chapters present algebraic and geometric basic concepts of linear programming theory and network flows needed for understanding integer programming. Finally, the book concludes with classical and modern solution approaches as well as the key components for building an integrated software system capable of solving large-scale integer programming and combinatorial optimization problems. Throughout the book, the authors demonstrate essential concepts through numerous examples and figures. Each new concept or algorithm is accompanied by a numerical example, and, where applicable, graphics are used to draw together diverse problems or approaches into a unified whole. In addition, features of solution approaches found in today's commercial software are identified throughout the book. Thoroughly classroom-tested, Applied Integer Programming is an excellent book for integer programming courses at the upper-undergraduate and graduate levels. It also serves as a well-organized reference for professionals, software developers, and analysts who work in the fields of applied mathematics, computer science, operations research, management science, and engineering and use integer-programming techniques to model and solve real-world optimization problems.
This tutorial contains written versions of seven lectures on Computational Combinatorial Optimization given by leading members of the optimization community. The lectures introduce modern combinatorial optimization techniques, with an emphasis on branch and cut algorithms and Lagrangian relaxation approaches. Polyhedral combinatorics as the mathematical backbone of successful algorithms are covered from many perspectives, in particular, polyhedral projection and lifting techniques and the importance of modeling are extensively discussed. Applications to prominent combinatorial optimization problems, e.g., in production and transport planning, are treated in many places; in particular, the book contains a state-of-the-art account of the most successful techniques for solving the traveling salesman problem to optimality.
Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.