Download Free Production Of Therapeutic Proteins In Plants Book in PDF and EPUB Free Download. You can read online Production Of Therapeutic Proteins In Plants and write the review.

Recombinant Proteins from Plants is one of the most exciting and fastest developing areas in biology. The latest molecular techniques are being applied to the exploitation of plants as novel expression systems for the p- duction and overproduction of heterologous and native proteins. Transgenic plant technology is currently used in three broad areas: the expression of - combinant proteins to improve crop quality by increasing disease/pest res- tance or increasing tolerance to stress, optimizing plant productivity and yield by the genetic manipulation of metabolic pathways, and the large-scale co- effective production of recombinant proteins for use as specialist industrial or therapeutic biomolecules. The intention of Recombinant Proteins from Plants is to provide c- prehensive and detailed protocols covering all the latest molecular approaches. Because the production oftransgenic plants has become routine in many la- ratories, coverage is also given to some of the more "classical" approaches to the separation, analysis, and characterization of recombinant proteins. The book also includes areas of research that we believe will become increasingly important in the near future: efficient transformation of monocots with Agrobacterium optimizing the stability of recombinant proteins, and a section highlighting the immunotherapeutic potential of plant-expressed proteins.
Altogether, the biochemical, technical and economic limitations on existing proka- otic and eukaryotic expression systems and the growing clinical demand for complex therapeutic proteins have created substantial interest in developing new expression systems for the production of therapeutic proteins. To that end, plants have emerged in the past decade as a suitable alternative to the current production systems, and today their potential for production of high quality, much safer and biologically active complex recombinant pharmaceutical proteins is largely documented. The chapters in this volume, contributed by leaders in the field, sum up the state-- the-art methods for using a variety of different plants as expression hosts for phar- ceutical proteins. Several production platforms are presented, ranging from seed- and leaf-based production in stable transgenic plant lines, to plant cell bioreactors, to viral or Agrobacterium-mediated transient expr ession systems. Currently, antibodies and their derived fragments represent the largest and most important group of biote- nological products in clinical trials. This explains why the potential of most prod- tion platforms is illustrated here principally for antibodies or antibody fragments with acknowledged potential for immunotherapy in humans. In addition, a comparison of different plant expression systems is presented using aprotinin, a commercial phar- ceutical protein, as a test system. Although multiple books and monographs have been recently published on mol- ular pharming, there is a noticeable dearth of bench step-by-step protocols that can be used quickly and easily by beginners entering this new field.
A single volume collection that surveys the exciting field of plant-made pharmaceuticals and industrial proteins This comprehensive book communicates the recent advances and exciting potential for the expanding area of plant biotechnology and is divided into six sections. The first three sections look at the current status of the field, and advances in plant platforms and strategies for improving yields, downstream processing, and controlling post-translational modifications of plant-made recombinant proteins. Section four reviews high-value industrial and pharmacological proteins that are successfully being produced in established and emerging plant platforms. The fifth section looks at regulatory challenges facing the expansion of the field. The final section turns its focus toward small molecule therapeutics, drug screening, plant specialized metabolites, and plants as model organisms to study human disease processes. Molecular Pharming: Applications, Challenges and Emerging Areas offers in-depth coverage of molecular biology of plant expression systems and manipulation of glycosylation processes in plants; plant platforms, subcellular targeting, recovery, and downstream processing; plant-derived protein pharmaceuticals and case studies; regulatory issues; and emerging areas. It is a valuable resource for researchers that are in the field of plant molecular pharming, as well as for those conducting basic research in gene expression, protein quality control, and other subjects relevant to molecular and cellular biology. Broad ranging coverage of a key area of plant biotechnology Describes efforts to produce pharmaceutical and industrial proteins in plants Provides reviews of recent advances and technology breakthroughs Assesses realities of regulatory and cost hurdles Forward looking with coverage of small molecule technologies and the use of plants as models of human disease processes Providing wide-ranging and unique coverage, Molecular Pharming: Applications, Challenges and Emerging Areas will be of great interest to the plant science, plant biotechnology, protein science, and pharmacological communities.
Discusses the types of biologics produced in plants, plant based production systems in use, government agencies responsible for regulation of biologics, and some agricultural practices required to safely produce biologics in crop plants.
Conceived with the intention of providing an array of strategies and technologies currently in use for glyco-engineering distinct living organisms, this book contains a wide range of methods being developed to control the composition of carbohydrates and the properties of proteins through manipulations on the production host rather than in the protein itself. The first five sections deal with host-specific glyco-engineering and contain chapters that provide protocols for modifications of the glycosylation pathway in bacteria, yeast, insect, plants and mammalian cells, while the last two sections explore alternative approaches to host glyco-engineering and selected protocols for the analysis of the N-glycans and glyco-profiling by mass spectrometry. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Authoritative and extensive, Glyco-Engineering: Methods and Protocols offers vast options to help researchers to choose the expression system and approach that best suits their intended protein research or applications.
The green revolution led to the development of improved varieties of crops, especially cereals, and since then, classical or molecular breeding has resulted in the creation of economically valuable species. Thanks to recent developments in genetic engineering, it has become possible to introduce genes from different sources, such as bacteria, fungi, viruses, mice and humans, to plants. This technology has made the scientific community aware of the critical role of transgenics, not only as a means of producing stress tolerant crops but also as a platform for the production of therapeutics through molecular farming. This book discusses the commercial applications of plant transgenic technologies, including the use of transgenic cell culture approachesto improve the production of metabolites and high-value therapeutics as well as transgenic plants in pest management. It also explores generation of novel vectors, protein production using chloroplast engineering and the latest developments in this area, such as genome editing in plants. Featuring general discussions and research papers by leading international experts, it is a valuable resource for scientists, teachers, students and industrialists working in the field.
Molecular farming in plants is a relatively young subject of sciences. As plants can offer an inexpensive and convenient platform for the large-scale production of recombinant proteins with various functions, the driven force from the giant market for recombinant protein pharmaceuticals and industrial enzymes makes this subject grow and advance very quickly. To summarize recent advances, current challenges and future directions in molecular farming, international authorities were invited to write this book for researchers, teachers and students who are interested in this subject. This book, with the focus on the most advanced cutting-edge breakthroughs, covers all the essential aspects of the field of molecular farming in plants: from expression technologies to downstream processing, from products to safety issues, and from current advances and holdups to future developments.
This book explores the journey of biotechnology, searching for new avenues and noting the impressive accomplishments to date. It has harmonious blend of facts, applications and new ideas. Fast-paced biotechnologies are broadly applied and are being continuously explored in areas like the environmental, industrial, agricultural and medical sciences. The sequencing of the human genome has opened new therapeutic opportunities and enriched the field of medical biotechnology while analysis of biomolecules using proteomics and microarray technologies along with the simultaneous discovery and development of new modes of detection are paving the way for ever-faster and more reliable diagnostic methods. Life-saving bio-pharmaceuticals are being churned out at an amazing rate, and the unraveling of biological processes has facilitated drug designing and discovery processes. Advances in regenerative medical technologies (stem cell therapy, tissue engineering, and gene therapy) look extremely promising, transcending the limitations of all existing fields and opening new dimensions for characterizing and combating diseases.
Attention has recently turned to using plants as hosts for the production of commercially important proteins. The twelve case studies in this volume present successful strategies for using plants to produce industrial and pharmaceutical proteins and vaccine antigens. They examine in detail projects that have commercial potential or products that have already been commercialized, illustrating the advantages that plants offer over bacterial, fungal or animal cell-culture hosts. There are many indications that plant protein production marks the beginning of a new paradigm for the commercial production of proteins that, over the next decade, will expand dramatically.