Download Free Processing Of Green Composites Book in PDF and EPUB Free Download. You can read online Processing Of Green Composites and write the review.

There is an increasing movement of scientists and engineers who are dedicated to minimising the environmental impact of polymer composite production. Life cycle assessment is of paramount importance at every stage of a product's life, from initial synthesis through to final disposal and a sustainable society needs environmentally safe materials and processing methods. With an internationally recognised team of contributors, Green Composites examines fibre reinforced polymer composite production and explains how environmental footprints can be diminished at every stage of the life cycle.The introductory chapters look at why we should consider green composites, their design and life cycle assessment. The properties of natural fibre sources such as cellulose and wood are then discussed. Chapter 6 examines recyclable synthetic fibre-thermoplastic composites as an alternative solution and polymers derived from natural sources are covered in Chapter 7. The factors that influence the properties of these natural composites and natural fibre thermoplastic composites are detailed in Chapters 8 and 9. The final four chapters consider clean processing, applications, recycling, degradation and reprocessing.Green composites is an essential guide for agricultural crop producers, government agricultural departments, automotive companies, composite producers and material scientists all dedicated to the promotion and practice of eco-friendly materials and production methods. - Reviews fibre reinforced polymer composite production - Explains how environmental footprints can be diminished at every stage of the life-cycle
This book highlights the processing, characterization and applications of various green composites. Composites are known for their unique properties, which are derived by combining two or more components. This yields properties such as greater strength and rigidity than that of the individual components, as well as reduced weight. To help achieve such outcomes, the book discusses the potential applications of hybrid bio-composites and sisal-fiber-reinforced epoxidized non-edible oil-based epoxy green composites.
This book presents important developments in green chemistry, with a particular focus on composite materials chemistry. In recent years, natural polymers have generated much interest due to their unique morphology and physical properties. The book gives an introductory overview of green composites, and discusses their emerging interdisciplinary applications in various contemporary fields. The chapters, written by leading experts from industry and academia, cover different aspects of biodegradable green composites and natural polymers including their processing, manufacturing, properties, and applications. This book will be a valuable reference for beginners, researchers as well as industry professionals interested in biodegradable composites.
This book is a collection of chapters focusing on green composite materials. The selection of natural fibers and polymer matrix materials, and the bonding between them forms an essential aspect of this book. The book discusses the chemical treatment of natural fibers and their compatibility with different matrix materials. The growing applications of composites in every day life ranging from automobiles to aerospace are also discussed. The book highlights the importance of processing of natural fiber reinforced composite materials to enhance their mechanical strength and performance. The contents of this book will be beneficial for students, researchers and industry professionals working on composite materials.
Green Composites for Automotive Applications presents cutting-edge, comprehensive reviews on the industrial applications of green composites. The book provides an elaborative assessment of both academic and industrial research on eco-design, durability issues, environmental performance, and future trends. Particular emphasis is placed on the processing and characterization of green composites, specific types of materials, such as thermoset and thermoplastic, nanocomposites, sandwich, and polymer biofoams. Additional sections cover lifecycle and risk analysis. As such, this book is an essential reference resource for R&D specialists working in materials science, automotive, chemical, and environmental engineering, as well as R&D managers in industry. - Contains contributions from leading experts in the field - Covers experimental, analytical and numerical analysis - Deals with most important automotive aspects - Provides a special section dedicated to lifecycle assessment
Global awareness of environmental issues has resulted in the emergence of economically and environmentally friendly bio-based materials free from the traditional side effects of synthetics. This book delivers an overview of the advancements made in the development of biorenewable resources-based materials, including processing methods and potential applications in bio-based green composites. Covering various kinds of cellulosic biofibers, the text provides information on more eco-friendly and sustainable alternatives to synthetic polymers and discusses the present state and growing utility of green materials from natural resources.
Industrial ecology, eco-efficiency, and green chemistry are guiding the development of the next generation of materials, products, and processes. Considerable growth has been seen in the use of biocomposites in the domestic sector, building materials, aerospace industry, circuit boards, and automotive applications over the past decade, but application in other sectors until now has been limited. Green Approaches to Biocomposite Materials Science and Engineering explores timely research on the various available types of natural fibers and the use of these fibers as a sustainable alternative to synthetic fibers and polymers. Emphasizing research-based solutions for sustainability across various industries, this publication is an essential reference source for engineers, researchers, environmental scientists, and graduate-level students.
The use of natural fibres as reinforcements in composites has grown in importance in recent years. Natural Fibre Composites summarises the wealth of significant recent research in this area. Chapters in part one introduce and explore the structure, properties, processing, and applications of natural fibre reinforcements, including those made from wood and cellulosic fibres. Part two describes and illustrates the processing of natural fibre composites. Chapters discuss ethical practices in the processing of green composites, manufacturing methods and compression and injection molding techniques for natural fibre composites, and thermoset matrix natural fibre-reinforced composites. Part three highlights and interprets the testing and properties of natural fibre composites including, non-destructive and high strain rate testing. The performance of natural fibre composites is examined under dynamic loading, the response of natural fibre composites to impact damage is appraised, and the response of natural fibre composites in a marine environment is assessed. Natural Fibre Composites is a technical guide for professionals requiring an understanding of natural fibre composite materials. It offers reviews, applications and evaluations of the subject for researchers and engineers. - Introduces and explores the structure, properties, processing, and applications of natural fibre reinforcements, including those made from wood and cellulosic fibres - Highlights and interprets the testing and properties of natural fibre composites, including non-destructive and high strain rate testing - Examines performance of natural fibre composites under dynamic loading, the response of natural fibre composites to impact damage, and the response of natural fibre composites in a marine environment
Natural fibre composite is an emerging material that has great potential to be used in engineering application. Oil palm, sugar palm, bagasse, coir, banana stem, hemp, jute, sisal, kenaf, roselle, rice husk, betul nut husk and cocoa pod are among the natural fibres reported to be used as reinforcing materials in polymer composites. Natural fibre composites were used in many industries such as automotive, building, furniture, marine and aerospace industries. The advantages of natural fibre composites include low cost, renewable, abundance, light weight, less abrasive and they are suitable to be used in semi or non-structural engineering components. Research on various aspects of natural fibre composites such as characterization, determination of properties and design have been extensively carried out. However, publications that reported on research of manufacture of natural fibre composites are very limited. Specifically, although manufacturing methods of components from natural fibre composites are similar to those of components from conventional fibre composites such as glass, carbon and Kevlar fibres, modification of equipment used for conventional fibre composites may be required. This book fills the gap of knowledge in the field of natural fibre composites for the research community. Among the methods reported that are being used to produce components from natural fibre composites include hand lay-up, compression moulding, filament winding, injection moulding, resin transfer moulding, pultrusion and vacuum bag moulding. This book is also intended to address some research on secondary processing such as machining and laser welding of natural fibre composites. It is hoped that publication of this book will provide the readers new knowledge and understanding on the manufacture of natural fibre composites.
Natural Fiber-Reinforced Biodegradable and Bioresorbable Polymer Composites focuses on key areas of fundamental research and applications of biocomposites. Several key elements that affect the usage of these composites in real-life applications are discussed. There will be a comprehensive review on the different kinds of biocomposites at the beginning of the book, then the different types of natural fibers, bio-polymers, and green nanoparticle biocomposites are discussed as well as their potential for future development and use in engineering biomedical and domestic products. Recently mankind has realized that unless the environment is protected, he himself will be threatened by the over consumption of natural resources as well as a substantial reduction in the amount of fresh air produced in the world. Conservation of forests and the optimal utilization of agricultural and other renewable resources like solar, wind, and tidal energy, have become important topics worldwide. With such concern, the use of renewable resources—such as plant and animal-based, fiber-reinforced polymeric composites—are now becoming an important design criterion for designing and manufacturing components for a broad range of different industrial products. Research on biodegradable polymeric composites can contribute, to some extent, to a much greener and safer environment. For example, in the biomedical and bioengineering fields, the use of natural fiber mixed with biodegradable and bioresorbable polymers can produce joint and bone fixtures to alleviate pain in patients. - Includes comprehensive information about the sources, properties, and biodegradability of natural fibers - Discusses failure mechanisms and modeling of natural fibers composites - Analyzes the effectiveness of using natural materials for enhancing mechanical, thermal, and biodegradable properties