Download Free Processes Affecting Soil And Groundwater Contamination By Dnapl In Low Permeability Media Book in PDF and EPUB Free Download. You can read online Processes Affecting Soil And Groundwater Contamination By Dnapl In Low Permeability Media and write the review.

This paper is one of a set of focus papers intended to document the current knowledge relevant to the contamination and remediation of soils and ground water by dense, nonaqueous phase liquids (DNAPL). The emphasis is on low permeability media such as fractured clay and till and unconsolidated, stratified formations. Basic concepts pertaining to immiscible-fluid mixtures are described and used to discuss such aspects as DNAPL transport, dissolved-phase transport, and equilibrium mass distributions. Several implications for remediation are presented. 27 refs., 8 figs., 4 tabs.
This book presents a comprehensive, up-to-date review of technologies for cleaning up contaminants in groundwater and soil. It provides a special focus on three classes of contaminants that have proven very difficult to treat once released to the subsurface: metals, radionuclides, and dense nonaqueous-phase liquids such as chlorinated solvents. Groundwater and Soil Cleanup was commissioned by the Department of Energy (DOE) as part of its program to clean up contamination in the nuclear weapons production complex. In addition to a review of remediation technologies, the book describes new trends in regulation of contaminated sites and assesses DOE's program for developing new subsurface cleanup technologies.
Accompanying CD-ROM ... "contains spreadsheets used in many of the example calculations, color versions of some of the illustrations, and movies illustrating the NAPL migration."-- p. vi.
At hundreds of thousands of commercial, industrial, and military sites across the country, subsurface materials including groundwater are contaminated with chemical waste. The last decade has seen growing interest in using aggressive source remediation technologies to remove contaminants from the subsurface, but there is limited understanding of (1) the effectiveness of these technologies and (2) the overall effect of mass removal on groundwater quality. This report reviews the suite of technologies available for source remediation and their ability to reach a variety of cleanup goals, from meeting regulatory standards for groundwater to reducing costs. The report proposes elements of a protocol for accomplishing source remediation that should enable project managers to decide whether and how to pursue source remediation at their sites.
Dense, non-aqueous phase liquid (DNAPL) compounds like trichloroethene (TCE) and perchloroethene (PCE) are prevalent at U.S. Department of Energy (DOE), other government, and industrial sites. Their widespread presence in low permeability media (LPM) poses severe challenges for assessment of their behavior and implementation of effective remediation technologies. Most remedial methods that involve fluid flow perform poorly in LPM. Hydraulic fracturing can improve the performance of remediation methods such as vapor extraction, free-product recovery, soil flushing, steam stripping, bioremediation, bioventing, and air sparging in LPM by enhancing formation permeability through the creation of fractures filled with high-permeability materials, such as sand. Hydraulic fracturing can improve the performance of other remediation methods such as oxidation, reductive dechlorination, and bioaugmentation by enhancing delivery of reactive agents to the subsurface. Hydraulic fractures are typically created using a 2-in. steel casing and a drive point pushed into the subsurface by a pneumatic hammer. Hydraulic fracturing has been widely used for more than 50 years to stimulate the yield of wells recovering oil from rock at great depth and has recently been shown to stimulate the yield of wells recovering contaminated liquids and vapors from LPM at shallow depths. Hydraulic fracturing is an enabling technology for improving the performance of some remedial methods and is a key element in the implementation of other methods. This document contains information on the above-mentioned technology, including description, applicability, cost, and performance data.
There may be nearly 300,000 waste sites in the United States where ground water and soil are contaminated. Yet recent studies question whether existing technologies can restore contaminated ground water to drinking water standards, which is the goal for most sites and the result expected by the public. How can the nation balance public health, technological realities, and cost when addressing ground water cleanup? This new volume offers specific conclusions, outlines research needs, and recommends policies that are technologically sound while still protecting health and the environment. Authored by the top experts from industry and academia, this volume: Examines how the physical, chemical, and biological characteristics of the subsurface environment, as well as the properties of contaminants, complicate the cleanup task. Reviews the limitations of widely used conventional pump-and-treat cleanup systems, including detailed case studies. Evaluates a range of innovative cleanup technologies and the barriers to their full implementation. Presents specific recommendations for policies and practices in evaluating contamination sites, in choosing remediation technologies, and in setting appropriate cleanup goals.
DNAPL Site Evaluation covers long-term contamination of ground water by DNAPL (dense non-aqueous phase liquids) chemicals. The book develops a framework for planning and implementing DNAPL site characterization activities. It provides detailed methods to identify, characterize, and monitor sites and analyzes their utility, limitations, risks, availability, and cost. Methods to interpret contaminant fate and transport are identified, and new site characterization methods are assessed. DNAPL Site Evaluation will maximize the cost-effectiveness of site investigation/remediation by providing the best information available to describe and evaluate methods to be used for determining the presence, fate, and transport of subsurface DNAPL contamination. The book will be a useful reference for groundwater professionals and environmental regulatory personnel.
This volume provides comprehensive up-to-date descriptions of the principles and practices of in situ chemical oxidation (ISCO) for groundwater remediation based on a decade of intensive research, development, and demonstrations, and lessons learned from commercial field applications.
And ConclusionsReferences; III METHODS OF WASTE DISPOSAL ; 4 Shallow Land Burial of Municipal Wastes; Introduction; Leachate Characteristics; Gas Production; Hydrogeologic Criteria; Unsaturated Flow; Site Size; Water Balance; Trench Covers; Trench Liners; Monitoring; Monitoring Methodology; Verification of Contamination; Conclusions; References; 5 Deep Burial Of Toxic Wastes; Introduction; Methods of Disposal; Advantages and Disadvantages of Deep Burial; A Hypothetical Repository; Hydrogeologic Properties of Rocks at Depth; General Data from Wells and Test Holes; Geochemical Evidence.