Download Free Process Engineering Problem Solving Book in PDF and EPUB Free Download. You can read online Process Engineering Problem Solving and write the review.

Avoid wasting time and money on recurring plant process problems by applying the practical, five-step solution in Process Engineering Problem Solving: Avoiding "The Problem Went Away, but it Came Back" Syndrome. Combine cause and effect problem solving with the formulation of theoretically correct working hypotheses and find a structural and pragmatic way to solve real-world issues that tend to be chronic or that require an engineering analysis. Utilize the fundamentals of chemical engineering to develop technically correct working hypotheses that are key to successful problem solving.
Avoid wasting time and money on recurring plant process problems by applying the practical, five-step solution in Process Engineering Problem Solving: Avoiding "The Problem Went Away, but it Came Back" Syndrome. Combine cause and effect problem solving with the formulation of theoretically correct working hypotheses and find a structural and pragmatic way to solve real-world issues that tend to be chronic or that require an engineering analysis. Utilize the fundamentals of chemical engineering to develop technically correct working hypotheses that are key to successful problem solving.
This book brings a fresh new approach to practical problem solving in engineering, covering the critical concepts and ideas that engineers must understand to solve engineering problems. Problem Solving for New Engineers: What Every Engineering Manager Wants You to Know provides strategy and tools needed for new engineers and scientists to become apprentice experimenters armed only with a problem to solve and knowledge of their subject matter. When engineers graduate, they enter the work force with only one part of what’s needed to effectively solve problems -- Problem solving requires not just subject matter expertise but an additional knowledge of strategy. With the combination of both knowledge of subject matter and knowledge of strategy, engineering problems can be attacked efficiently. This book develops strategy for minimizing, eliminating, and finally controlling unwanted variation such that all intentional variation is truly representative of the variables of interest.
The Problem Went Away, but it Came Back" Syndrome. Combine cause and effect problem solving with the formulation of theoretically correct working hypotheses and find a structural and pragmatic way to solve real-world issues that tend to be chronic or that require an engineering analysis. Utilize the fundamentals of chemical engineering to develop technically correct working hypotheses that are key to successful problem solving.
Whatever their discipline, engineers are routinely called upon to develop solutions to all kinds of problems. To do so effectively, they need a systematic and disciplined approach that considers a range of alternatives, taking into account all relevant factors, before selecting the best solution. In Problem Solving for Engineers, David Carmichael demonstrates just such an approach involving problem definition, generation of alternative solutions, and, ultimately, the analysis and selection of a preferred solution. David Carmichael introduces the fundamental concepts needed to think systematically and undertake methodical problem solving. He argues that the most rational way to develop a framework for problem solving is by using a systems studies viewpoint. He then outlines systems methodology, modeling, and the various configurations for analysis, synthesis, and investigation. Building on this, the book details a systematic process for problem solving and demonstrates how problem solving and decision making lie within a systems synthesis configuration. Carefully designed as a self-learning resource, the book contains exercises throughout that reinforce the material and encourage readers to think and apply the concepts. It covers decision making in the presence of uncertainty and multiple criteria, including that involving sustainability with its blend of economic, social, and environmental considerations. It also characterizes and tackles the specific problem solving of management, planning, and design. The book provides, for the first time, a rational framework for problem solving with an engineering orientation.
This book provides methods to train process operators to solve challenging problems. The book is split into two parts. The first part consists of two parts; first developing a daily monitoring system and second providing a structured 5 step problem solving approach that combines cause and effect problem solving thinking with the formulation of theoretically correct hypotheses. The 5 step approach emphasizes the classical problem solving approach (defining the sequence of events) with the addition of the steps of formulating a theoretically correct working hypothesis, providing a means to test the hypothesis, and providing a foolproof means to eliminate the problem. The initial part of the book focuses on defining the problem that must be solved and obtaining the location, time and quantity based specifications of the problem. This part of the book also presents techniques to find and define problems at an early point before they progress to the critical level. The second part of the book deals with the utilization of fundamental chemical engineering skills to develop a technically correct working hypothesis that is the key to successful problem solving. The primary emphasis is on simple pragmatic calculation techniques that are theoretically correct. It is believed that any operator can perform these calculations if he is provided the correct prototype. Throughout the book, the theory behind each pragmatic calculation technique is explained in understandable terms prior to presenting the author's approach. These techniques have been developed by the author in 50+ years of industrial experience. The book includes many sample problems and examples of real world problem solving. Using these techniques, theoretically correct working hypotheses can be developed in an expedient fashion.
Chemical production processes consist of many complex apparatuses involving both moving and static parts as well as interconnecting pipes, control mechanisms and electronics, mechanical and thermal stages, heat exchangers, waste and side product processing units, power ducts and many others. Bringing such a complicated unit online and ensuring its continued productivity requires substantial skill at anticipating, detecting and solving acute problems. This book is the professional's and student's entrance to the fascinating and important world of trouble shooting for chemical, pharmaceutical and other production processes.
"A companion book including interactive software for students and professional engineers who want to utilize problem-solving software to effectively and efficiently obtain solutions to realistic and complex problems. An Invaluable reference book that discusses and Illustrates practical numerical problem solving in the core subject areas of Chemical Engineering. Problem Solving in Chemical Engineering with Numerical Methods provides an extensive selection of problems that require numerical solutions from throughout the core subject areas of chemical engineering. Many are completely solved or partially solved using POLYMATH as the representative mathematical problem-solving software, Ten representative problems are also solved by Excel, Maple, Mathcad, MATLAB, and Mathematica. All problems are clearly organized and all necessary data are provided. Key equations are presented or derived. Practical aspects of efficient and effective numerical problem solving are emphasized. Many complete solutions are provided within the text and on the CD-ROM for use in problem-solving exercises."--BOOK JACKET.Title Summary field provided by Blackwell North America, Inc. All Rights Reserved
Summary: "Today, the majority of engineers in many varied fields must utilize CAD/CAM systems in their work, but due to the increasing number and sophistication of programs and methods available, no one engineer can possibly be an expert in all of them. This book will help, by offering a detailed and comprehensive survey of all the leading computer-aided engineering methods, effectively providing a map to this sometimes confusing world. It is especially written for design and production engineers practicing in the modern industrial environment, where design, analysis, manufacturing planning, production planning and computer controlled equipment programming are all governed by CAD/CAM systems. The authors, who are engineering professors as well as IT professionals, clearly explain concepts, approaches, principles, and practical methods in purposefully IT-jargon free language, so that engineers will not get lost in a tangle of acronyms. It profides basic theoretical background and examines the relative value of various competitive computer-aided engineering methods, so that engineers will feel confident in making design tool choices, without having to become specialists in the development issues surrounding each system"--Back cover.