Download Free Process Algebras For Petri Nets Book in PDF and EPUB Free Download. You can read online Process Algebras For Petri Nets and write the review.

In modern society services and support provided by computer-based systems have become ubiquitous and indeed have started to fund amentally alter the way people conduct their business. Moreover, it has become apparent that among the great variety of computer technologies available to potential users a crucial role will be played by concurrent systems. The reason is that many commonly occurring phenomena and computer applications are highly con current : typical examples include control systems, computer networks, digital hardware, business computing, and multimedia systems. Such systems are characterised by ever increasing complexity, which results when large num bers of concurrently active components interact. This has been recognised and addressed within the computing science community. In particular, sev eral form al models of concurrent systems have been proposed, studied, and applied in practice. This book brings together two of the most widely used formalisms for de scribing and analysing concurrent systems: Petri nets and process algebras. On the one hand , process algebras allow one to specify and reason about the design of complex concurrent computing systems by means of algebraic operators corresponding to common programming constructs. Petri nets, on the other hand, provide a graphical representation of such systems and an additional means of verifying their correctness efficiently, as well as a way of expressing properties related to causality and concurrency in system be haviour.
This book deals with the problem of finding suitable languages that can represent specific classes of Petri nets, the most studied and widely accepted model for distributed systems. Hence, the contribution of this book amounts to the alphabetization of some classes of distributed systems. The book also suggests the need for a generalization of Turing computability theory. It is important for graduate students and researchers engaged with the concurrent semantics of distributed communicating systems. The author assumes some prior knowledge of formal languages and theoretical computer science.
Annotation In a component-based approach for system design, one of the difficult problems is how to prove the correctness of the created components. This volume presents a component-based methodology for the creation and verification of design specifications.
Process Algebra is a formal description technique for complex computer systems, especially those involving communicating, concurrently executing components. It is a subject that concurrently touches many topic areas of computer science and discrete math, including system design notations, logic, concurrency theory, specification and verification, operational semantics, algorithms, complexity theory, and, of course, algebra.This Handbook documents the fate of process algebra since its inception in the late 1970's to the present. It is intended to serve as a reference source for researchers, students, and system designers and engineers interested in either the theory of process algebra or in learning what process algebra brings to the table as a formal system description and verification technique. The Handbook is divided into six parts spanning a total of 19 self-contained Chapters. The organization is as follows. Part 1, consisting of four chapters, covers a broad swath of the basic theory of process algebra. Part 2 contains two chapters devoted to the sub-specialization of process algebra known as finite-state processes, while the three chapters of Part 3 look at infinite-state processes, value-passing processes and mobile processes in particular. Part 4, also three chapters in length, explores several extensions to process algebra including real-time, probability and priority. The four chapters of Part 5 examine non-interleaving process algebras, while Part 6's three chapters address process-algebra tools and applications.
In modern society services and support provided by computer-based systems have become ubiquitous and indeed have started to fund amentally alter the way people conduct their business. Moreover, it has become apparent that among the great variety of computer technologies available to potential users a crucial role will be played by concurrent systems. The reason is that many commonly occurring phenomena and computer applications are highly con current : typical examples include control systems, computer networks, digital hardware, business computing, and multimedia systems. Such systems are characterised by ever increasing complexity, which results when large num bers of concurrently active components interact. This has been recognised and addressed within the computing science community. In particular, sev eral form al models of concurrent systems have been proposed, studied, and applied in practice. This book brings together two of the most widely used formalisms for de scribing and analysing concurrent systems: Petri nets and process algebras. On the one hand , process algebras allow one to specify and reason about the design of complex concurrent computing systems by means of algebraic operators corresponding to common programming constructs. Petri nets, on the other hand, provide a graphical representation of such systems and an additional means of verifying their correctness efficiently, as well as a way of expressing properties related to causality and concurrency in system be haviour.
This tutorial volume originates from the 4th Advanced Course on Petri Nets, ACPN 2003, held in Eichsttt, Germany in September 2003. In addition to lectures given at ACPN 2003, additional chapters have been commissioned to give a well-balanced presentation of the state of the art in the area. This book will be useful as both a reference for those working in the area as well as a study book for the reader who is interested in an up-to-date overview of research and development in concurrent and distributed systems; of course, readers specifically interested in theoretical or applicational aspects of Petri nets will appreciate the book as well.
This tutorial volume originates from the 4th Advanced Course on Petri Nets, ACPN 2003, held in Eichstätt, Germany in September 2003. In addition to lectures given at ACPN 2003, additional chapters have been commissioned to give a well-balanced presentation of the state of the art in the area. This book will be useful as both a reference for those working in the area as well as a study book for the reader who is interested in an up-to-date overview of research and development in concurrent and distributed systems; of course, readers specifically interested in theoretical or applicational aspects of Petri nets will appreciate the book as well.
This work relates different approaches for the modelling of parallel processes. On the one hand there are the so-called "process algebras" or "abstract programming languages" with Milner's Calculus of Communicating Systems (CCS) and the theoretical version of Hoare's Communicating Sequential Processes (CSP) as main representatives. On the other hand there are machine models, i.e. the classical finite state automata (transition systems), for which, however, more discriminating notions of equivalence than equality of languages are used; and secondly, there are differently powerful types of Petri nets, namely safe and general (place/transition) nets respectively, and predicate/transition nets. Within a uniform framework the syntax and the operational semantics of CCS and TCSP are explained. We consider both, Milner's well-known interleaving semantics, which is based on infinite transition systems, as well as the new distributed semantics introduced by Degano et al., which is based on infinite safe nets. The main part of this work contains three syntax-driven constructions of transition systems, safe nets, and predicate/transition nets respectively. Each of them is accompanied by a proof of consistency. Due to intrinsic limits, which are also investigated here, neither for transition systems and finite nets, nor for general nets does a finite consistent representation of all CCS and TCSP programs exist. However sublanguages which allow finite representations are discerned. On the other hand the construction of predicate/transition nets is possible for all CCS programs in which every choice and every recursive body starts sequentially.
Presents a unified overview of the various process algebras currently in use and sets the standard for the field.
Control of Discrete-event Systems provides a survey of the most important topics in the discrete-event systems theory with particular focus on finite-state automata, Petri nets and max-plus algebra. Coverage ranges from introductory material on the basic notions and definitions of discrete-event systems to more recent results. Special attention is given to results on supervisory control, state estimation and fault diagnosis of both centralized and distributed/decentralized systems developed in the framework of the Distributed Supervisory Control of Large Plants (DISC) project. Later parts of the text are devoted to the study of congested systems though fluidization, an over approximation allowing a much more efficient study of observation and control problems of timed Petri nets. Finally, the max-plus algebraic approach to the analysis and control of choice-free systems is also considered. Control of Discrete-event Systems provides an introduction to discrete-event systems for readers that are not familiar with this class of systems, but also provides an introduction to research problems and open issues of current interest to readers already familiar with them. Most of the material in this book has been presented during a Ph.D. school held in Cagliari, Italy, in June 2011.