Download Free Proceedings Of The Twentieth Acm Sigmod Sigact Sigart Symposium On Principles Of Database Systems Book in PDF and EPUB Free Download. You can read online Proceedings Of The Twentieth Acm Sigmod Sigact Sigart Symposium On Principles Of Database Systems and write the review.

Privacy preserving data mining implies the "mining" of knowledge from distributed data without violating the privacy of the individual/corporations involved in contributing the data. This volume provides a comprehensive overview of available approaches, techniques and open problems in privacy preserving data mining. Crystallizing much of the underlying foundation, the book aims to inspire further research in this new and growing area. Privacy Preserving Data Mining is intended to be accessible to industry practitioners and policy makers, to help inform future decision making and legislation, and to serve as a useful technical reference.
This book constitutes the refereed proceedings of the 14th International Conference on Information Security, ISC 2011, held in Xi'an, China, in October 2011. The 25 revised full papers were carefully reviewed and selected from 95 submissions. The papers are organized in topical sections on attacks; protocols; public-key cryptosystems; network security; software security; system security; database security; privacy; digital signatures.
Probabilistic databases are databases where the value of some attributes or the presence of some records are uncertain and known only with some probability. Applications in many areas such as information extraction, RFID and scientific data management, data cleaning, data integration, and financial risk assessment produce large volumes of uncertain data, which are best modeled and processed by a probabilistic database. This book presents the state of the art in representation formalisms and query processing techniques for probabilistic data. It starts by discussing the basic principles for representing large probabilistic databases, by decomposing them into tuple-independent tables, block-independent-disjoint tables, or U-databases. Then it discusses two classes of techniques for query evaluation on probabilistic databases. In extensional query evaluation, the entire probabilistic inference can be pushed into the database engine and, therefore, processed as effectively as the evaluation of standard SQL queries. The relational queries that can be evaluated this way are called safe queries. In intensional query evaluation, the probabilistic inference is performed over a propositional formula called lineage expression: every relational query can be evaluated this way, but the data complexity dramatically depends on the query being evaluated, and can be #P-hard. The book also discusses some advanced topics in probabilistic data management such as top-k query processing, sequential probabilistic databases, indexing and materialized views, and Monte Carlo databases. Table of Contents: Overview / Data and Query Model / The Query Evaluation Problem / Extensional Query Evaluation / Intensional Query Evaluation / Advanced Techniques
This book constitutes the refereed proceedings of the First European Semantic Web Symposium, ESWS 2004, held in Heraklion, Crete, Greece in May 2004. The 33 revised full papers presented were carefully reviewed and selected from 79 submissions. The papers are organized in topical sections on ontology engineering, ontology matching and mapping, ontology-based querying, ontology merging and population, infrastructure, semantic web services, service discovery and composition, data from the semantic web, knowledge presentation, applications, content management, and information management and integration.
The Handbook of Data Structures and Applications was first published over a decade ago. This second edition aims to update the first by focusing on areas of research in data structures that have seen significant progress. While the discipline of data structures has not matured as rapidly as other areas of computer science, the book aims to update those areas that have seen advances. Retaining the seven-part structure of the first edition, the handbook begins with a review of introductory material, followed by a discussion of well-known classes of data structures, Priority Queues, Dictionary Structures, and Multidimensional structures. The editors next analyze miscellaneous data structures, which are well-known structures that elude easy classification. The book then addresses mechanisms and tools that were developed to facilitate the use of data structures in real programs. It concludes with an examination of the applications of data structures. Four new chapters have been added on Bloom Filters, Binary Decision Diagrams, Data Structures for Cheminformatics, and Data Structures for Big Data Stores, and updates have been made to other chapters that appeared in the first edition. The Handbook is invaluable for suggesting new ideas for research in data structures, and for revealing application contexts in which they can be deployed. Practitioners devising algorithms will gain insight into organizing data, allowing them to solve algorithmic problems more efficiently.
As businesses are continuously developing new services, procedures, and standards, electronic business has emerged into an important aspect of the science field by providing various applications through efficiently and rapidly processing information among business partners. Research and Development in E-Business through Service-Oriented Solutions highlights the main concepts of e-business as well as the advanced methods, technologies, and aspects that focus on technical support. This book is an essential reference source of professors, students, researchers, developers, and other industry experts in order to provide a vast amount of specialized knowledge sources for promoting e-business.
This book provides timely studies on multi-view facets of data analytics by covering recent trends in processing and reasoning about data originating from an array of local sources. A multi-view nature of data analytics is encountered when working with a variety of real-world scenarios including clustering, consensus building in decision processes, computer vision, knowledge representation, big data, data streaming, among others. The chapters demonstrate recent pursuits in the methodology, theory, advanced algorithms, and applications of multi-view data analytics and bring new perspectives of data interpretation. The timely book will appeal to a broad readership including both researchers and practitioners interested in gaining exposure to the rapidly growing trend of multi-view data analytics and intelligent systems.
This book constitutes the thoroughly refereed post-workshop proceedings of the First International Workshop on Datalog 2.0, held in Oxford, UK, in March 2010. The 22 revised full papers presented were carefully selected during two rounds of reviewing and improvements from numerous submissions. The papers showcase the state-of-the-art in theory and systems for datalog, divided in three sections: Properties, applications, and extensions of datalog.