Download Free Proceedings Of The Summer Computer Simulation Conference Book in PDF and EPUB Free Download. You can read online Proceedings Of The Summer Computer Simulation Conference and write the review.

This book is based on the “Summer Simulation Multi-Conference” (SCSC), which has been a prominent platform for the dissemination of scholarly research in the M&S community for the last 50 years. In keeping with the conference’s seasonal title, the authors have called this half-century “the summer of simulation,” and it has led not only to simulation-based disciplines but also simulation as a discipline. This book discusses contributions from the SCSC in four sections. The first section is an introduction to the work. The second section is devoted to contributions from simulation research fellows who were associated with the SCSC, while the third section features the SCSC’s most influential contributions. Lastly, the fourth section includes contributions from the best papers in the last five years. Features: • A comprehensive volume dedicated to one of the simulation domain’s major conferences: the SCSC • Offers a scientometric analysis of the SCSC • Revisits high-impact topics from 50 years of the SCSC • Includes chapters by simulation research fellows associated with the SCSC • Presents updated best-paper contributions from the recent conference This work will be of value to anyone interested in the evolution of modeling and simulation over the last fifty years. Readers will gain a perspective on what drove this evolution, and develop an understanding of the key contributions that allowed this technology to grow into its own academic discipline and profession.
The International Conference on Health Care Systems Engineering (HCSE) provided a timely opportunity to discuss statistical analysis and operations management issues in health care delivery systems. The conference took place in Milan between May 22nd and 24th, 2013. Scientists and practitioners discussed new ideas, methods and technologies for improving the operation of health care organizations. The event and this resulting volume emphasize research in the field of health care systems engineering developed in close collaboration with clinicians.​ Topics applicable to researchers and practitioners include: hospital drug logistics, operating theatres, modelling and simulation in patient care and healthcare organizations, home care services.
From aeronautics and manufacturing to healthcare and disaster management, systems engineering (SE) now focuses on designing applications that ensure performance optimization, robustness, and reliability while combining an emerging group of heterogeneous systems to realize a common goal. Use SoS to Revolutionize Management of Large Organizations, Factories, and Systems Intelligent Control Systems with an Introduction to System of Systems Engineering integrates the fundamentals of artificial intelligence and systems control in a framework applicable to both simple dynamic systems and large-scale system of systems (SoS). For decades, NASA has used SoS methods, and major manufacturers—including Boeing, Lockheed-Martin, Northrop-Grumman, Raytheon, BAE Systems—now make large-scale systems integration and SoS a key part of their business strategies, dedicating entire business units to this remarkably efficient approach. Simulate Novel Robotic Systems and Applications Transcending theory, this book offers a complete and practical review of SoS and some of its fascinating applications, including: Manipulation of robots through neural-based network control Use of robotic swarms, based on ant colonies, to detect mines Other novel systems in which intelligent robots, trained animals, and humans cooperate to achieve humanitarian objectives Training engineers to integrate traditional systems control theory with soft computing techniques further nourishes emerging SoS technology. With this in mind, the authors address the fundamental precepts at the core of SoS, which uses human heuristics to model complex systems, providing a scientific rationale for integrating independent, complex systems into a single coordinated, stabilized, and optimized one. They provide readers with MATLAB® code, which can be downloaded from the publisher's website to simulate presented results and projects that offer practical, hands-on experience using concepts discussed throughout the book.
General Purpose Simulation System (GPSS) is a special computer programming language primarily used to simulate what can be classified as discrete systems. A discrete system is one where, at any given instant in time, a countable number of things can take place. The basic operation of a mine itself can be considered such a system. Discrete Simulatio
Collecting the work of the foremost scientists in the field, Discrete-Event Modeling and Simulation: Theory and Applications presents the state of the art in modeling discrete-event systems using the discrete-event system specification (DEVS) approach. It introduces the latest advances, recent extensions of formal techniques, and real-world examples of various applications. The book covers many topics that pertain to several layers of the modeling and simulation architecture. It discusses DEVS model development support and the interaction of DEVS with other methodologies. It describes different forms of simulation supported by DEVS, the use of real-time DEVS simulation, the relationship between DEVS and graph transformation, the influence of DEVS variants on simulation performance, and interoperability and composability with emphasis on DEVS standardization. The text also examines extensions to DEVS, new formalisms, and abstractions of DEVS models as well as the theory and analysis behind real-world system identification and control. To support the generation and search of optimal models of a system, a framework is developed based on the system entity structure and its transformation to DEVS simulation models. In addition, the book explores numerous interesting examples that illustrate the use of DEVS to build successful applications, including optical network-on-chip, construction/building design, process control, workflow systems, and environmental models. A one-stop resource on advances in DEVS theory, applications, and methodology, this volume offers a sampling of the best research in the area, a broad picture of the DEVS landscape, and trend-setting applications enabled by the DEVS approach. It provides the basis for future research discoveries and encourages the development of new applications.
This book is dedicated to improving healthcare through reducing delays experienced by patients. With an interdisciplinary approach, this new edition, divided into five sections, begins by examining healthcare as an integrated system. Chapter 1 provides a hierarchical model of healthcare, rising from departments, to centers, regions and the “macro system.” A new chapter demonstrates how to use simulation to assess the interaction of system components to achieve performance goals, and Chapter 3 provides hands-on methods for developing process models to identify and remove bottlenecks, and for developing facility plans. Section 2 addresses crowding and the consequences of delay. Two new chapters (4 and 5) focus on delays in emergency departments, and Chapter 6 then examines medical outcomes that result from waits for surgeries. Section 3 concentrates on management of demand. Chapter 7 presents breakthrough strategies that use real-time monitoring systems for continuous improvement. Chapter 8 looks at the patient appointment system, particularly through the approach of advanced access. Chapter 9 concentrates on managing waiting lists for surgeries, and Chapter 10 examines triage outside of emergency departments, with a focus on allied health programs Section 4 offers analytical tools and models to support analysis of patient flows. Chapter 11 offers techniques for scheduling staff to match patterns in patient demand. Chapter 12 surveys the literature on simulation modeling, which is widely used for both healthcare design and process improvement. Chapter 13 is new and demonstrates the use of process mapping to represent a complex regional trauma system. Chapter 14 provides methods for forecasting demand for healthcare on a region-wide basis. Chapter 15 presents queueing theory as a method for modeling waits in healthcare, and Chapter 16 focuses on rapid delivery of medication in the event of a catastrophic event. Section 5 focuses on achieving change. Chapter 17 provides a diagnostic for assessing the state of a hospital and using the state assessment to select improvement strategies. Chapter 18 demonstrates the importance of optimizing care as patients transition from one care setting to the next. Chapter 19 is new and shows how to implement programs that improve patient satisfaction while also improving flow. Chapter 20 illustrates how to evaluate the overall portfolio of patient diagnostic groups to guide system changes, and Chapter 21 provides project management tools to guide the execution of patient flow projects.
Real-Time Simulation Technologies: Principles, Methodologies, and Applications is an edited compilation of work that explores fundamental concepts and basic techniques of real-time simulation for complex and diverse systems across a broad spectrum. Useful for both new entrants and experienced experts in the field, this book integrates coverage of detailed theory, acclaimed methodological approaches, entrenched technologies, and high-value applications of real-time simulation—all from the unique perspectives of renowned international contributors. Because it offers an accurate and otherwise unattainable assessment of how a system will behave over a particular time frame, real-time simulation is increasingly critical to the optimization of dynamic processes and adaptive systems in a variety of enterprises. These range in scope from the maintenance of the national power grid, to space exploration, to the development of virtual reality programs and cyber-physical systems. This book outlines how, for these and other undertakings, engineers must assimilate real-time data with computational tools for rapid decision making under uncertainty. Clarifying the central concepts behind real-time simulation tools and techniques, this one-of-a-kind resource: Discusses the state of the art, important challenges, and high-impact developments in simulation technologies Provides a basis for the study of real-time simulation as a fundamental and foundational technology Helps readers develop and refine principles that are applicable across a wide variety of application domains As science moves toward more advanced technologies, unconventional design approaches, and unproven regions of the design space, simulation tools are increasingly critical to successful design and operation of technical systems in a growing number of application domains. This must-have resource presents detailed coverage of real-time simulation for system design, parallel and distributed simulations, industry tools, and a large set of applications.