Download Free Proceedings Of The National Science Council Book in PDF and EPUB Free Download. You can read online Proceedings Of The National Science Council and write the review.

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
A Framework for K-12 Science Education and Next Generation Science Standards (NGSS) describe a new vision for science learning and teaching that is catalyzing improvements in science classrooms across the United States. Achieving this new vision will require time, resources, and ongoing commitment from state, district, and school leaders, as well as classroom teachers. Successful implementation of the NGSS will ensure that all K-12 students have high-quality opportunities to learn science. Guide to Implementing the Next Generation Science Standards provides guidance to district and school leaders and teachers charged with developing a plan and implementing the NGSS as they change their curriculum, instruction, professional learning, policies, and assessment to align with the new standards. For each of these elements, this report lays out recommendations for action around key issues and cautions about potential pitfalls. Coordinating changes in these aspects of the education system is challenging. As a foundation for that process, Guide to Implementing the Next Generation Science Standards identifies some overarching principles that should guide the planning and implementation process. The new standards present a vision of science and engineering learning designed to bring these subjects alive for all students, emphasizing the satisfaction of pursuing compelling questions and the joy of discovery and invention. Achieving this vision in all science classrooms will be a major undertaking and will require changes to many aspects of science education. Guide to Implementing the Next Generation Science Standards will be a valuable resource for states, districts, and schools charged with planning and implementing changes, to help them achieve the goal of teaching science for the 21st century.
The regulation of potentially hazardous substances has become a controversial issue. This volume evaluates past efforts to develop and use risk assessment guidelines, reviews the experience of regulatory agencies with different administrative arrangements for risk assessment, and evaluates various proposals to modify procedures. The book's conclusions and recommendations can be applied across the entire field of environmental health.
Researchers, historians, and philosophers of science have debated the nature of scientific research in education for more than 100 years. Recent enthusiasm for "evidence-based" policy and practice in educationâ€"now codified in the federal law that authorizes the bulk of elementary and secondary education programsâ€"have brought a new sense of urgency to understanding the ways in which the basic tenets of science manifest in the study of teaching, learning, and schooling. Scientific Research in Education describes the similarities and differences between scientific inquiry in education and scientific inquiry in other fields and disciplines and provides a number of examples to illustrate these ideas. Its main argument is that all scientific endeavors share a common set of principles, and that each fieldâ€"including education researchâ€"develops a specialization that accounts for the particulars of what is being studied. The book also provides suggestions for how the federal government can best support high-quality scientific research in education.
Scores of talented and dedicated people serve the forensic science community, performing vitally important work. However, they are often constrained by lack of adequate resources, sound policies, and national support. It is clear that change and advancements, both systematic and scientific, are needed in a number of forensic science disciplines to ensure the reliability of work, establish enforceable standards, and promote best practices with consistent application. Strengthening Forensic Science in the United States: A Path Forward provides a detailed plan for addressing these needs and suggests the creation of a new government entity, the National Institute of Forensic Science, to establish and enforce standards within the forensic science community. The benefits of improving and regulating the forensic science disciplines are clear: assisting law enforcement officials, enhancing homeland security, and reducing the risk of wrongful conviction and exoneration. Strengthening Forensic Science in the United States gives a full account of what is needed to advance the forensic science disciplines, including upgrading of systems and organizational structures, better training, widespread adoption of uniform and enforceable best practices, and mandatory certification and accreditation programs. While this book provides an essential call-to-action for congress and policy makers, it also serves as a vital tool for law enforcement agencies, criminal prosecutors and attorneys, and forensic science educators.
The past half-century has witnessed a dramatic increase in the scale and complexity of scientific research. The growing scale of science has been accompanied by a shift toward collaborative research, referred to as "team science." Scientific research is increasingly conducted by small teams and larger groups rather than individual investigators, but the challenges of collaboration can slow these teams' progress in achieving their scientific goals. How does a team-based approach work, and how can universities and research institutions support teams? Enhancing the Effectiveness of Team Science synthesizes and integrates the available research to provide guidance on assembling the science team; leadership, education and professional development for science teams and groups. It also examines institutional and organizational structures and policies to support science teams and identifies areas where further research is needed to help science teams and groups achieve their scientific and translational goals. This report offers major public policy recommendations for science research agencies and policymakers, as well as recommendations for individual scientists, disciplinary associations, and research universities. Enhancing the Effectiveness of Team Science will be of interest to university research administrators, team science leaders, science faculty, and graduate and postdoctoral students.
The Endangered Species Act (ESA) is a far-reaching law that has sparked intense controversies over the use of public lands, the rights of property owners, and economic versus environmental benefits. In this volume a distinguished committee focuses on the science underlying the ESA and offers recommendations for making the act more effective. The committee provides an overview of what scientists know about extinctionâ€"and what this understanding means to implementation of the ESA. Habitatâ€"its destruction, conservation, and fundamental importance to the ESAâ€"is explored in detail. The book analyzes: Concepts of speciesâ€"how the term "species" arose and how it has been interpreted for purposes of the ESA. Conflicts between species when individual species are identified for protection, including several case studies. Assessment of extinction risk and decisions under the ESAâ€"how these decisions can be made more effectively. The book concludes with a look beyond the Endangered Species Act and suggests additional means of biological conservation and ways to reduce conflicts. It will be useful to policymakers, regulators, scientists, natural-resource managers, industry and environmental organizations, and those interested in biological conservation.
In the summer of 1803, Thomas Jefferson sent Meriwether Lewis and William Clark on a journey to establish an American presence in a land of unqualified natural resources and riches. Is it fitting that, on the 200th anniversary of that expedition, the United States, together with international partners, should embark on another journey of exploration in a vastly more extensive region of remarkable potential for discovery. Although the oceans cover more than 70 percent of our planet's surface, much of the ocean has been investigated in only a cursory sense, and many areas have not been investigated at all. Exploration of the Seas assesses the feasibility and potential value of implementing a major, coordinated, international program of ocean exploration and discovery. The study committee surveys national and international ocean programs and strategies for cooperation between governments, institutions, and ocean scientists and explorers, identifying strengths, weaknesses, and gaps in these activities. Based primarily on existing documents, the committee summarizes priority areas for ocean research and exploration and examines existing plans for advancing ocean exploration and knowledge.
Americans agree that our students urgently need better science education. But what should they be expected to know and be able to do? Can the same expectations be applied across our diverse society? These and other fundamental issues are addressed in National Science Education Standardsâ€"a landmark development effort that reflects the contributions of thousands of teachers, scientists, science educators, and other experts across the country. The National Science Education Standards offer a coherent vision of what it means to be scientifically literate, describing what all students regardless of background or circumstance should understand and be able to do at different grade levels in various science categories. The standards address: The exemplary practice of science teaching that provides students with experiences that enable them to achieve scientific literacy. Criteria for assessing and analyzing students' attainments in science and the learning opportunities that school science programs afford. The nature and design of the school and district science program. The support and resources needed for students to learn science. These standards reflect the principles that learning science is an inquiry-based process, that science in schools should reflect the intellectual traditions of contemporary science, and that all Americans have a role in improving science education. This document will be invaluable to education policymakers, school system administrators, teacher educators, individual teachers, and concerned parents.