Download Free Proceedings Of The Eighth International Conference On Soft Computing And Pattern Recognition Socpar 2016 Book in PDF and EPUB Free Download. You can read online Proceedings Of The Eighth International Conference On Soft Computing And Pattern Recognition Socpar 2016 and write the review.

This volume presents 70 carefully selected papers from a major joint event: the 8th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2016) and the 8th International Conference on Computational Aspects of Social Networks (CASoN 2016). SoCPaR–CASoN 2016, which was organized by the Machine Intelligence Research Labs (MIR Labs), USA and Vellore Institute of Technology (VIT), India and held at the VIT on December 19–21, 2016. It brings together researchers and practitioners from academia and industry to share their experiences and exchange new ideas on all interdisciplinary areas of soft computing and pattern recognition, as well as intelligent methods applied to social networks. This book is a valuable resource for practicing engineers/scientists and researchers working in the field of soft computing, pattern recognition and social networks.
This book highlights the recent research on soft computing and pattern recognition and their various practical applications. It presents 62 selected papers from the 12th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2020) and 35 papers from the 16th International Conference on Information Assurance and Security (IAS 2020), which was held online, from December 15 to 18, 2020. A premier conference in the field of artificial intelligence, SoCPaR-IAS 2020 brought together researchers, engineers and practitioners whose work involves intelligent systems, network security and their applications in industry. Including contributions by authors from 40 countries, the book offers a valuable reference guide for all researchers, students and practitioners in the fields of Computer Science and Engineering.
​This book covers the theory, design and applications of computer networks, distributed computing and information systems. Networks of today are going through a rapid evolution, and there are many emerging areas of information networking and their applications. Heterogeneous networking supported by recent technological advances in low-power wireless communications along with silicon integration of various functionalities such as sensing, communications, intelligence and actuations is emerging as a critically important disruptive computer class based on a new platform, networking structure and interface that enable novel, low-cost and high-volume applications. Several of such applications have been difficult to realize because of many interconnections problems. To fulfill their large range of applications, different kinds of networks need to collaborate, and wired and next-generation wireless systems should be integrated in order to develop high-performance computing solutions to problems arising from the complexities of these networks. The aim of the book “Advanced Information Networking and Applications” is to provide latest research findings, innovative research results, methods and development techniques from both theoretical and practical perspectives related to the emerging areas of information networking and applications.
The volume is a collection of best selected research papers presented at International Conference on Advances in Data-driven Computing and Intelligent Systems (ADCIS 2022) held at BITS Pilani, K K Birla Goa Campus, Goa, India during 23 – 25 September 2022. It includes state-of-the art research work in the cutting-edge technologies in the field of data science and intelligent systems. The book presents data-driven computing; it is a new field of computational analysis which uses provided data to directly produce predictive outcomes. The book will be useful for academicians, research scholars, and industry persons.
This book covers recent advances in artificial intelligence, smart computing, and their applications in augmenting medical and health care systems. It will serve as an ideal reference text for graduate students and academic researchers in diverse engineering fields including electrical, electronics and communication, computer, and biomedical. This book: Presents architecture, characteristics, and applications of artificial intelligence and smart computing in health care systems Highlights privacy issues faced in health care and health informatics using artificial intelligence and smart computing technologies Discusses nature-inspired computing algorithms for the brain-computer interface Covers graph neural network application in the medical domain Provides insights into the state-of-the-art artificial intelligence and smart computing enabling and emerging technologies This book discusses recent advances and applications of artificial intelligence and smart technologies in the field of healthcare. It highlights privacy issues faced in health care and health informatics using artificial intelligence and smart computing technologies. It covers nature-inspired computing algorithms such as genetic algorithms, particle swarm optimization algorithms, and common scrambling algorithms to study brain-computer interfaces. It will serve as an ideal reference text for graduate students and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer engineering, and biomedical engineering.
A comprehensive book providing high-quality research addressing challenges in theoretical and application aspects of soft computing and machine learning in image processing and computer vision. Researchers are working to create new algorithms that combine the methods provided by CI approaches to solve the problems of image processing and computer vision such as image size, noise, illumination, and security. The 19 chapters in this book examine computational intelligence (CI) approaches as alternative solutions for automatic computer vision and image processing systems in a wide range of applications, using machine learning and soft computing. Applications highlighted in the book include: diagnostic and therapeutic techniques for ischemic stroke, object detection, tracking face detection and recognition; computational-based strategies for drug repositioning and improving performance with feature selection, extraction, and learning; methods capable of retrieving photometric and geometric transformed images; concepts of trading the cryptocurrency market based on smart price action strategies; comparative evaluation and prediction of exoplanets using machine learning methods; the risk of using failure rate with the help of MTTF and MTBF to calculate reliability; a detailed description of various techniques using edge detection algorithms; machine learning in smart houses; the strengths and limitations of swarm intelligence and computation; how to use bidirectional LSTM for heart arrhythmia detection; a comprehensive study of content-based image-retrieval techniques for feature extraction; machine learning approaches to understanding angiogenesis; handwritten image enhancement based on neutroscopic-fuzzy. Audience The book has been designed for researchers, engineers, graduate, and post-graduate students wanting to learn more about the theoretical and application aspects of soft computing and machine learning in image processing and computer vision.
Healthcare Solutions Using Machine Learning and Informatics covers novel and innovative solutions for healthcare that apply machine learning and biomedical informatics technology. The healthcare sector is one of the most critical in society. This book presents a series of artificial intelligence, machine learning, and intelligent IoT-based solutions for medical image analysis, medical big-data processing, and disease predictions. Machine learning and artificial intelligence use cases in healthcare presented in the book give researchers, practitioners, and students a wide range of practical examples of cross-domain convergence. The wide variety of topics covered include: Artificial Intelligence in healthcare Machine learning solutions for such disease as diabetes, arthritis, cardiovascular disease, and COVID-19 Big data analytics solutions for healthcare data processing Reliable biomedical applications using AI models Intelligent IoT in healthcare The book explains fundamental concepts as well as the advanced use cases, illustrating how to apply emerging technologies such as machine learning, AI models, and data informatics into practice to tackle challenges in the field of healthcare with real-world scenarios. Chapters contributed by noted academicians and professionals examine various solutions, frameworks, applications, case studies, and best practices in the healthcare domain.
This book is an attempt to establish in the readers the importance of creating interoperable data stores and writing rules for handling this data. It also covers extracts from a few project dissertations and a research funded project that the author had supervised.• Describes the power of ontologies for better data management• Provides an overview of knowledge engineering including ontology engineering, tools and techniques• Provides sample development procedures for creating two domain ontologies.• Depicts the utility of ontological representation in situation awareness• Demonstrates recommendation engine for unconventional emergencies using a hybrid reasoning approach.• The text explains how to make better utilization of resources when emergency strikesGraduates and undergraduates doing courses in artificial intelligence, semantic web and knowledge engineering will find this book beneficial.
This volume presents selected papers from the 3rd International Conference on Optical and Wireless Technologies, conducted from 16th to 17th March, 2019. It focuses on extending the limits of currently used systems encompassing optical and wireless domains, and explores the latest developments in applications like photonics, high speed communication systems and networks, visible light communication, nano-photonics, wireless, and MIMO systems. The proceedings contain high quality scholarly articles, giving insight into the analytical, experimental, and developmental aspects of systems, techniques, and devices in these spheres. This volume will prove useful to researchers and professionals alike.
Agriculture is one of the most fundamental human activities. As the farming capacity has expanded, the usage of resources such as land, fertilizer, and water has grown exponentially, and environmental pressures from modern farming techniques have stressed natural landscapes. Still, by some estimates, worldwide food production needs to increase to keep up with global food demand. Machine Learning and the Internet of Things can play a promising role in the Agricultural industry, and help to increase food production while respecting the environment. This book explains how these technologies can be applied, offering many case studies developed in the research world.