Download Free Proceedings Of The 2019 International Computer Music Conference Book in PDF and EPUB Free Download. You can read online Proceedings Of The 2019 International Computer Music Conference and write the review.

Expanded, updated, and fully revised—the definitive introduction to electronic music is ready for new generations of students. Essential and state-of-the-art, The Computer Music Tutorial, second edition is a singular text that introduces computer and electronic music, explains its motivations, and puts topics into context. Curtis Roads’s step-by-step presentation orients musicians, engineers, scientists, and anyone else new to computer and electronic music. The new edition continues to be the definitive tutorial on all aspects of computer music, including digital audio, signal processing, musical input devices, performance software, editing systems, algorithmic composition, MIDI, and psychoacoustics, but the second edition also reflects the enormous growth of the field since the book’s original publication in 1996. New chapters cover up-to-date topics like virtual analog, pulsar synthesis, concatenative synthesis, spectrum analysis by atomic decomposition, Open Sound Control, spectrum editors, and instrument and patch editors. Exhaustively referenced and cross-referenced, the second edition adds hundreds of new figures and references to the original charts, diagrams, screen images, and photographs in order to explain basic concepts and terms. Features New chapters: virtual analog, pulsar synthesis, concatenative synthesis, spectrum analysis by atomic decomposition, Open Sound Control, spectrum editors, instrument and patch editors, and an appendix on machine learning Two thousand references support the book’s descriptions and point readers to further study Mathematical notation and program code examples used only when necessary Twenty-five years of classroom, seminar, and workshop use inform the pace and level of the material
This book constitutes the thoroughly refereed proceedings of the 7th International Conference on Mathematics and Computation in Music, MCM 2019, held in Madrid, Spain, in June 2019. The 22 full papers and 10 short papers presented were carefully reviewed and selected from 48 submissions. The papers feature research that combines mathematics or computation with music theory, music analysis, composition, and performance. They are organized in topical sections on algebraic and other abstract mathematical approaches to understanding musical objects; remanaging Riemann: mathematical music theory as “experimental philosophy”?; octave division; computer-based approaches to composition and score structuring; models for music cognition and beat tracking; pedagogy of mathematical music theory. The chapter “Distant Neighbors and Interscalar Contiguities” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
3D Audio offers a detailed perspective of this rapidly developing arena. Written by many of the world’s leading researchers and practitioners, it draws from science, technologies, and creative practice to provide insight into cutting-edge research in 3D audio. Through exploring the intersection of these fields, the reader will gain insight into a number of research areas and professional practice in 3D sonic space. As such, the book acts both as a primer that enables readers to gain an understanding of various aspects of 3D audio, and can inform students and audio enthusiasts, but its deep treatment of a diverse range of topics will also inform professional practitioners and academics beyond their core specialisms. The chapters cover areas such as an Ambisonics, binaural technologies and approaches, psychoacoustics, 3D audio recording, composition for 3D space, 3D audio in live sound, broadcast, and movies – and more. Overall, this book offers a definitive insight into an emerging sound world that is increasingly becoming part of our everyday lives.
The electronic medium allows any audible sound to be contextualized as music. This creates unique structural possibilities as spectrum, dynamics, space, and time become continuous dimensions of musical articulation. What we hear in electronic music ventures beyond what we traditionally characterize as musical sound and challenges our auditory perception, on the one hand, and our imagination, on the other. Based on an extensive listening study conducted over four years, this book offers a comprehensive analysis of the cognitive processes involved in the experience of electronic music. It pairs artistic practice with theories from a range of disciplines to communicate how this music operates on perceptual, conceptual, and affective levels. Looking at the common and divergent ways in which our minds respond to electronic sound, it investigates how we build narratives from our experience of electronic music and situate ourselves in them.
First Published in 1994. The contributions to this collection have been selected to define a range of interests from the technical, aesthetic, cognitive and compositional spheres. The book addresses the continuing need for musicologists, psychologists, composers and listeners to enter into a creative dialogue with designers and builders, who are usually programmers in the contemporary world. The collection as a whole will help to demonstrate the great potential for exchange between the multidisciplinary approaches to music.
This book presents analyses of pattern in music from different computational and mathematical perspectives. A central purpose of music analysis is to represent, discover, and evaluate repeated structures within single pieces or within larger corpora of related pieces. In the chapters of this book, music corpora are structured as monophonic melodies, polyphony, or chord sequences. Patterns are represented either extensionally as locations of pattern occurrences in the music, or intensionally as sequences of pitch or chord features, rhythmic profiles, geometric point sets, and logical expressions. The chapters cover both deductive analysis, where music is queried for occurrences of a known pattern, and inductive analysis, where patterns are found using pattern discovery algorithms. Results are evaluated using a variety of methods including visualization, contrasting corpus analysis, and reference to known and expected patterns. Pattern in Music will be a key resource for academics, researchers, and advanced students of music, musicology, music analyses, mathematical music theory, computational musicology, and music informatics. This book was originally published as a special issue of the Journal of Mathematics and Music.
This book presents a new approach to computational musicology in which music becomes a computational entity based on human cognition, allowing us to calculate music like numbers. Does music have semantics? Can the meaning of music be revealed using symbols and described using language? The authors seek to answer these questions in order to reveal the essence of music. Chapter 1 addresses a very fundamental point, the meaning of music, while referring to semiotics, gestalt, Schenkerian analysis and cognitive reality. Chapter 2 considers why the 12-tone equal temperament came to be prevalent. This chapter serves as an introduction to the mathematical definition of harmony, which concerns the ratios of frequency in tonic waves. Chapter 3, “Music and Language,” explains the fundamentals of grammar theory and the compositionality principle, which states that the semantics of a sentence can be composed in parallel to its syntactic structure. In turn, Chapter 4 explains the most prevalent score notation – the Berklee method, which originated at the Berklee School of Music in Boston – from a different point of view, namely, symbolic computation based on music theory. Chapters 5 and 6 introduce readers to two important theories, the implication-realization model and generative theory of tonal music (GTTM), and explain the essence of these theories, also from a computational standpoint. The authors seek to reinterpret these theories, aiming at their formalization and implementation on a computer. Chapter 7 presents the outcomes of this attempt, describing the framework that the authors have developed, in which music is formalized and becomes computable. Chapters 8 and 9 are devoted to GTTM analyzers and the applications of GTTM. Lastly, Chapter 10 discusses the future of music in connection with computation and artificial intelligence. This book is intended both for general readers who are interested in music, and scientists whose research focuses on music information processing. In order to make the content as accessible as possible, each chapter is self-contained.
A timely exploration of where creative practices and arts live in our higher education communities. How do creatives shape this creative education ecosystem? How does art provide an interface between what is within and outside of our knowledge institutions? And why should all of this matter for our communities?