Download Free Proceedings Of The 2006 Usc Trg Conference On Biofiltration For Air Pollution Control Book in PDF and EPUB Free Download. You can read online Proceedings Of The 2006 Usc Trg Conference On Biofiltration For Air Pollution Control and write the review.

The second edition of Comprehensive Biotechnology, Six Volume Set continues the tradition of the first inclusive work on this dynamic field with up-to-date and essential entries on the principles and practice of biotechnology. The integration of the latest relevant science and industry practice with fundamental biotechnology concepts is presented with entries from internationally recognized world leaders in their given fields. With two volumes covering basic fundamentals, and four volumes of applications, from environmental biotechnology and safety to medical biotechnology and healthcare, this work serves the needs of newcomers as well as established experts combining the latest relevant science and industry practice in a manageable format. It is a multi-authored work, written by experts and vetted by a prestigious advisory board and group of volume editors who are biotechnology innovators and educators with international influence. All six volumes are published at the same time, not as a series; this is not a conventional encyclopedia but a symbiotic integration of brief articles on established topics and longer chapters on new emerging areas. Hyperlinks provide sources of extensive additional related information; material authored and edited by world-renown experts in all aspects of the broad multidisciplinary field of biotechnology Scope and nature of the work are vetted by a prestigious International Advisory Board including three Nobel laureates Each article carries a glossary and a professional summary of the authors indicating their appropriate credentials An extensive index for the entire publication gives a complete list of the many topics treated in the increasingly expanding field
Over the past two decades, the use of microbes to remove pollutants from contaminated air streams has become a widely accepted and efficient alternative to the classical physical and chemical treatment technologies. This book focuses on biotechnological alternatives, looking at both the optimization of bioreactors and the development of cleaner biofuels. It is the first reference work to give a broad overview of bioprocesses for the mitigation of air pollution. Essential reading for researchers and students in environmental engineering, biotechnology, and applied microbiology, and industrial and governmental researchers.
Environmental chemistry is a fast developing science aimed at deciphering fundamental mechanisms ruling the behaviour of pollutants in ecosystems. Applying this knowledge to current environmental issues leads to the remediation of environmental media, and to new, low energy, low emission, sustainable processes. Chapters review analysis and remediation of pollutants such as greenhouse gases, chiral pharmaceuticals, dyes, chlorinated organics, arsenic, toxic metals and pathogen in air, water, plant and soil. Several highlights include the overlooked impact of air pollutants from buildings for health risk, innovative remediation techniques such as bioreactors for gas treatment, electrochemical cleaning of pharmaceuticals, sequestration on Fe-Mn nodules, phytoremediation and photocatalytical inactivation of microbial pathogens. This book will be a valuable source of information for engineers and students developing novel applied techniques to monitor and clean pollutants in air, wastewater, soils and sediments.
This book discusses the need for the development of sustainable environmental protection technologies to reduce the impact of environmental contaminants. Three levels of sustainable technologies are addressed. The first level involves the concept of sustainable technologies as natural technologies, or ecotechnologies, whereby contamination level is assessed based on the contamination footprint through the use of biogeochemical barriers (e.g. methods utilizing the bioaccumulation properties of plants). The second level concerns the use of sustainable natural materials, such as biochar, in environmental engineering systems, an approach that is used for analyzing the processes of adsorption and biofiltration, as well as immobilization of contaminants in soil. The third level discusses the optimal components necessary to achieve sustainability in environmental engineering systems, including system operation principles, structural solutions, and the synergies between various system components such as microorganisms. The book will be of interest to specialists of industrial enterprises engaged in environmental protection, as well as environmental system designers, stakeholders from environmental protection ministries and institutions, researchers, doctoral students and masters and bachelors of science in the field of environmental engineering.
Journal of composting & recycling.
The prevention of over-exploitation and the efficient use of natural resources are key goals of environmental managment in Industry. Waste Gas Treatment for Resource Recovery presents the reader with technical, ecological and economical aspects of gaseous effluent treatment and resource recovery. Practical experience from industry and agriculture is presented, the role of newly developed advanced technology in future recycling of gas streams discussed and attention given to criteria for sustainability in gas treatment. Detailed analysis of material flows, novel process applications and bioreactor designs, odour quantification and removal process techniques and European legislations for waste gas discharge and recovery are highlights of the extensive and comprehensive coverage of this book. Waste Gas Treatment for Resource Recovery will enable production, process and environmental engineers and managers to evaluate internal recycling possibilities, which contribute to an economically and environmentally friendly manufacturing processes with reduced pollution loads and waste gas volumes. Analysis of material flows, e.g. the development of methodologies and techniques to monitor the use and flow of materials on a life cycle basis Novel process applications and bioreactor designs for resource recovery from waste gases Odour quantification techniques and novel odour removal processes European dimension of polluted gas streams and the European legislation for waste gas discharges and recovery
The number-one environmental threat to public health, air pollution remains a pressing problem-made even more complicated by the massive quantity and diversity of air pollution sources. Biofiltration technology (using micro-organisms growing on porous media) is being recognized as one of the most advantageous means to convert pollutants to harmless products. Done properly, biofiltration works at a reasonable cost-utilizing inexpensive components, without requiring fuel or generating hazardous by-products. Firmly established in Europe, biofiltration techniques are being increasingly applied in North America: Biofiltration for Air Pollution Control offers the necessary knowledge to "do it right."
Air pollution, a major concern at the end of the 20th century, still remains a significant problem to be solved today. Traditionally, industrial waste gases have primarily been treated through physical or chemical methods. The search for new, efficient, and cost-effective alternative technologies has led to the development and, more recently, the improvement of gas phase bioreactors. This book is the first single text to provide a complete, comprehensive picture of all major biological reactors suitable for solving air pollution problems. The text describes the main features and covers the major aspects, from microbiological to engineering, as well as economic aspects, of the different types of bioreactors. The book also presents an in-depth review of the subject, from fundamental bench-scale research to industrial field applications related to the operation of full-scale systems successfully treating polluted air in Europe and the United States. Material dedicated to more conventional non-biological technologies has also been included, to provide a complete overview of the different alternative treatment processes. Audience: The different chapters have been written by international experts, as a result of a fruitful collaboration between European and American scientists and engineers. The resulting text is a high quality, valuable reference tool for a variety of readers, including graduate and postgraduate students, researchers, professors, engineers, and those professionals who are interested in environmental engineering and, more specifically, in innovative air pollution control technologies.