Download Free Proceedings Of The 19th International Meshing Roundtable Book in PDF and EPUB Free Download. You can read online Proceedings Of The 19th International Meshing Roundtable and write the review.

The papers in this volume were selected for presentation at the 19th International Meshing Roundtable (IMR), held October 3–6, 2010 in Chattanooga, Tennessee, USA. The conference was started by Sandia National Laboratories in 1992 as a small meeting of organizations striving to establish a common focus for research and development in the field of mesh generation. Now after 19 consecutive years, the International Meshing Roundtable has become recognized as an international focal point annually attended by researchers and developers from dozens of co- tries around the world. The 19th International Meshing Roundtable consists of technical presentations from contributed papers, research notes, keynote and invited talks, short course presentations, and a poster session and competition. The Program Committee would like to express its appreciation to all who participate to make the IMR a successful and enriching experience. The papers in these proceedings were selected by the Program Committee from among numerous submissions. Based on input from peer reviews, the committee selected these papers for their perceived quality, originality, and appropriateness to the theme of the International Meshing Roundtable. We would like to thank all who submitted papers. We would also like to thank the colleagues who provided reviews of the submitted papers. The names of the reviewers are acknowledged in the following pages. We extend special thanks to Jacqueline Hunter for her time and effort to make the 19th IMR another outstanding conference.
The papers in this volume were selected for presentation at the 19th International Meshing Roundtable (IMR), held October 3–6, 2010 in Chattanooga, Tennessee, USA. The conference was started by Sandia National Laboratories in 1992 as a small meeting of organizations striving to establish a common focus for research and development in the field of mesh generation. Now after 19 consecutive years, the International Meshing Roundtable has become recognized as an international focal point annually attended by researchers and developers from dozens of co- tries around the world. The 19th International Meshing Roundtable consists of technical presentations from contributed papers, research notes, keynote and invited talks, short course presentations, and a poster session and competition. The Program Committee would like to express its appreciation to all who participate to make the IMR a successful and enriching experience. The papers in these proceedings were selected by the Program Committee from among numerous submissions. Based on input from peer reviews, the committee selected these papers for their perceived quality, originality, and appropriateness to the theme of the International Meshing Roundtable. We would like to thank all who submitted papers. We would also like to thank the colleagues who provided reviews of the submitted papers. The names of the reviewers are acknowledged in the following pages. We extend special thanks to Jacqueline Hunter for her time and effort to make the 19th IMR another outstanding conference.
This volume contains the articles presented at the 20th International Meshing Roundtable (IMR) organized, in part, by Sandia National Laboratories and was held in Paris, France on Oct 23-26, 2011. This is the first year the IMR was held outside the United States territory. Other sponsors of the 20th IMR are Systematic Paris Region Systems & ICT Cluster, AIAA, NAFEMS, CEA, and NSF. The Sandia National Laboratories started the first IMR in 1992, and the conference has been held annually since. Each year the IMR brings together researchers, developers, and application experts, from a variety of disciplines, to present and discuss ideas on mesh generation and related topics. The topics covered by the IMR have applications in numerical analysis, computational geometry, computer graphics, as well as other areas, and the presentations describe novel work ranging from theory to application.
This volume contains the articles presented at the 21st International Meshing Roundtable (IMR) organized, in part, by Sandia National Laboratories and was held on October 7–10, 2012 in San Jose, CA, USA. The first IMR was held in 1992, and the conference series has been held annually since. Each year the IMR brings together researchers, developers, and application experts in a variety of disciplines, from all over the world, to present and discuss ideas on mesh generation and related topics. The technical papers in this volume present theoretical and novel ideas and algorithms with practical potential, as well as technical applications in science and engineering, geometric modeling, computer graphics, and visualization.
This volume contains the articles presented at the 22nd International Meshing Roundtable (IMR) organized, in part, by Sandia National Laboratories and was held on Oct 13-16, 2013 in Orlando, Florida, USA. The first IMR was held in 1992, and the conference series has been held annually since. Each year the IMR brings together researchers, developers, and application experts in a variety of disciplines, from all over the world, to present and discuss ideas on mesh generation and related topics. The technical papers in this volume present theoretical and novel ideas and algorithms with practical potential, as well as technical applications in science and engineering, geometric modeling, computer graphics and visualization.
High quality meshes play a key role in many applications based on digital modeling and simulation. The finite element method is a paragon for such an approach and it is well known that quality meshes can significantly improve computational efficiency and solution accuracy of this method. Therefore, a lot of effort has been put in methods for improving mesh quality. These range from simple geometric approaches, like Laplacian smoothing, with a high computational efficiency but possible low resulting mesh quality, to global optimization-based methods, resulting in an excellent mesh quality at the cost of an increased computational and implementational complexity. The geometric element transformation method (GETMe) aims to fill the gap between these two approaches. It is based on geometric mesh element transformations, which iteratively transform polygonal and polyhedral elements into their regular counterparts or into elements with a prescribed shape. GETMe combines a Laplacian smoothing-like computational efficiency with a global optimization-like effectiveness. The method is straightforward to implement and its variants can also be used to improve tangled and anisotropic meshes. This book describes the mathematical theory of geometric element transformations as foundation for mesh smoothing. It gives a thorough introduction to GETMe-based mesh smoothing and its algorithms providing a framework to focus on effectively improving key mesh quality aspects. It addresses the improvement of planar, surface, volumetric, mixed, isotropic, and anisotropic meshes and addresses aspects of combining mesh smoothing with topological mesh modification. The advantages of GETMe-based mesh smoothing are demonstrated by the example of various numerical tests. These include smoothing of real world meshes from engineering applications as well as smoothing of synthetic meshes for demonstrating key aspects of GETMe-based mesh improvement. Results are compared with those of other smoothing methods in terms of runtime behavior, mesh quality, and resulting finite element solution efficiency and accuracy. Features: • Helps to improve finite element mesh quality by applying geometry-driven mesh smoothing approaches. • Supports the reader in understanding and implementing GETMe-based mesh smoothing. • Discusses aspects and properties of GETMe smoothing variants and thus provides guidance for choosing the appropriate mesh improvement algorithm. • Addresses smoothing of various mesh types: planar, surface, volumetric, isotropic, anisotropic, non-mixed, and mixed. • Provides and analyzes geometric element transformations for polygonal and polyhedral elements with regular and non-regular limits. • Includes a broad range of numerical examples and compares results with those of other smoothing methods.
Proceedings of the 2012 International Conference on Information Technology and Software Engineering presents selected articles from this major event, which was held in Beijing, December 8-10, 2012. This book presents the latest research trends, methods and experimental results in the fields of information technology and software engineering, covering various state-of-the-art research theories and approaches. The subjects range from intelligent computing to information processing, software engineering, Web, unified modeling language (UML), multimedia, communication technologies, system identification, graphics and visualizing, etc. The proceedings provide a major interdisciplinary forum for researchers and engineers to present the most innovative studies and advances, which can serve as an excellent reference work for researchers and graduate students working on information technology and software engineering. Prof. Wei Lu, Dr. Guoqiang Cai, Prof. Weibin Liu and Dr. Weiwei Xing all work at Beijing Jiaotong University.
As a new interdisciplinary research area, “image-based geometric modeling and mesh generation” integrates image processing, geometric modeling and mesh generation with finite element method (FEM) to solve problems in computational biomedicine, materials sciences and engineering. It is well known that FEM is currently well-developed and efficient, but mesh generation for complex geometries (e.g., the human body) still takes about 80% of the total analysis time and is the major obstacle to reduce the total computation time. It is mainly because none of the traditional approaches is sufficient to effectively construct finite element meshes for arbitrarily complicated domains, and generally a great deal of manual interaction is involved in mesh generation. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications.
The papers in this volume were selected for presentation at the 15th International Meshing Roundtable, held September 17–20, 2006 in Birmingham, Alabama, U.S.A.. The conference was started by Sandia National Laboratories in 1992 as a small meeting of organizations striving to establish a common focus for research and development in the field of mesh generation. Now after 15 consecutive years, the International Meshing Roundtable has become recognized as an international focal point annually attended by researchers and developers from dozens of countries around the world. The 15th International Meshing Roundtable consists of technical presentations from contributed papers, keynote and invited talks, short course presentations, and a poster session and competition. The Program Committee would like to express its appreciation to all who participate to make the IMR a successful and enriching experience. The papers in these proceedings were selected from among 42 submissions by the Program Committee. Based on input from peer reviews, the committee selected these papers for their perceived quality, originality, and appropriateness to the theme of the International Meshing Roundtable. The Program Committee would like to thank all who submitted papers. We would also like to thank the colleagues who provided reviews of the submitted papers. The names of the reviewers are acknowledged in the following pages. As Program Chair, I would like to extend special thanks to the Program Committee and to the Conference Coordinators for their time and effort to make the 15th IMR another outstanding conference.
One of the greatest challenges for mechanists is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, biomedical sciences, and medicine. The proposed workshop will provide an opportunity for computational biomechanics specialists to present and exchange opinions on the opportunities of applying their techniques to computer-integrated medicine. These are peer-reviewed proceedings of the workshop affiliated to a major international research conference (Medical Image Computing and Computer Assisted Intervention MICCAI 2010 in Beijing) dedicated to research in the field of medical image computing and computer assisted medical interventions. The list of subjects covered include: medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, injury mechanism analysis, implant and prostheses design, medical robotics.