Download Free Proceedings Of The 1994 Ieee International Symposium On Intelligent Control Book in PDF and EPUB Free Download. You can read online Proceedings Of The 1994 Ieee International Symposium On Intelligent Control and write the review.

These papers discuss major areas of intelligent control. Topics include: intelligent control in space structures; hybrid control system synthesis, verification and stability; intelligent machines; and neural networks for robotics."
Intelligent Control considers non-traditional modelling and control approaches to nonlinear systems. Fuzzy logic, neural networks and evolutionary computing techniques are the main tools used. The book presents a modular switching fuzzy logic controller where a PD-type fuzzy controller is executed first followed by a PI-type fuzzy controller thus improving the performance of the controller compared with a PID-type fuzzy controller. The advantage of the switching-type fuzzy controller is that it uses one rule-base thus minimises the rule-base during execution. A single rule-base is developed by merging the membership functions for change of error of the PD-type controller and sum of error of the PI-type controller. Membership functions are then optimized using evolutionary algorithms. Since the two fuzzy controllers were executed in series, necessary further tuning of the differential and integral scaling factors of the controller is then performed. Neural-network-based tuning for the scaling parameters of the fuzzy controller is then described and finally an evolutionary algorithm is applied to the neurally-tuned-fuzzy controller in which the sigmoidal function shape of the neural network is determined. The important issue of stability is addressed and the text demonstrates empirically that the developed controller was stable within the operating range. The text concludes with ideas for future research to show the reader the potential for further study in this area. Intelligent Control will be of interest to researchers from engineering and computer science backgrounds working in the intelligent and adaptive control.
This volume contains the proceedings of the 1999 IEEE International Symposium on Intelligent Control. The wide variety of topics covered include; timed discrete event systems; learning, genetic and fuzzy systems; emotions in psychology and neural networks; and a panel discussion on autonomy.
The purpose of this annual series, Applied and Computational Control, Signals, and Circuits, is to keep abreast of the fast-paced developments in computational mathematics and scientific computing and their increasing use by researchers and engineers in control, signals, and circuits. The series is dedicated to fostering effective communication between mathematicians, computer scientists, computational scientists, software engineers, theorists, and practicing engineers. This interdisciplinary scope is meant to blend areas of mathematics (such as linear algebra, operator theory, and certain branches of analysis) and computational mathematics (numerical linear algebra, numerical differential equations, large scale and parallel matrix computations, numerical optimization) with control and systems theory, signal and image processing, and circuit analysis and design. The disciplines mentioned above have long enjoyed a natural synergy. There are distinguished journals in the fields of control and systems the ory, as well as signal processing and circuit theory, which publish high quality papers on mathematical and engineering aspects of these areas; however, articles on their computational and applications aspects appear only sporadically. At the same time, there has been tremendous recent growth and development of computational mathematics, scientific comput ing, and mathematical software, and the resulting sophisticated techniques are being gradually adapted by engineers, software designers, and other scientists to the needs of those applied disciplines.
This book is on the iterative learning control (ILC) with focus on the design and implementation. We approach the ILC design based on the frequency domain analysis and address the ILC implementation based on the sampled data methods. This is the first book of ILC from frequency domain and sampled data methodologies. The frequency domain design methods offer ILC users insights to the convergence performance which is of practical benefits. This book presents a comprehensive framework with various methodologies to ensure the learnable bandwidth in the ILC system to be set with a balance between learning performance and learning stability. The sampled data implementation ensures effective execution of ILC in practical dynamic systems. The presented sampled data ILC methods also ensure the balance of performance and stability of learning process. Furthermore, the presented theories and methodologies are tested with an ILC controlled robotic system. The experimental results show that the machines can work in much higher accuracy than a feedback control alone can offer. With the proposed ILC algorithms, it is possible that machines can work to their hardware design limits set by sensors and actuators. The target audience for this book includes scientists, engineers and practitioners involved in any systems with repetitive operations.
This book discusses systematic designs of stable adaptive fuzzy logic controllers employing hybridizations of Lyapunov strategy-based approaches/H∞ theory-based approaches and contemporary stochastic optimization techniques. The text demonstrates how candidate stochastic optimization techniques like Particle swarm optimization (PSO), harmony search (HS) algorithms, covariance matrix adaptation (CMA) etc. can be utilized in conjunction with the Lyapunov theory/H∞ theory to develop such hybrid control strategies. The goal of developing a series of such hybridization processes is to combine the strengths of both Lyapunov theory/H∞ theory-based local search methods and stochastic optimization-based global search methods, so as to attain superior control algorithms that can simultaneously achieve desired asymptotic performance and provide improved transient responses. The book also demonstrates how these intelligent adaptive control algorithms can be effectively utilized in real-life applications such as in temperature control for air heater systems with transportation delay, vision-based navigation of mobile robots, intelligent control of robot manipulators etc.