Download Free Proceedings Of The 1991 Ieee Power Engineering Society Book in PDF and EPUB Free Download. You can read online Proceedings Of The 1991 Ieee Power Engineering Society and write the review.

Intelligent Knowledge Based Systems in Electrical Power Engineering details how intelligent applications can be used in the power industry. The book gives a general and historical overview of intelligent knowledge based systems (IKBS) and artificial intelligence (AI) and a broad analysis of the application of these techniques in the electrical power industry. It includes chapters on forecasting and planning in power systems, design of electrical plant and systems, IKBS in condition monitoring, alarm processing, event and fault diagnosis and an analysis of future trends in IKBS for power engineering. No previous knowledge of IKBS is assumed, but an appreciation of electrical transmission and distribution systems would be useful.
This book builds on the cutting edge research presented in the previous edition that was the first of its kind to present the technology behind an emerging power systems management tool still in the early stages of commercial roll-out. In the intervening years, synchrophasors have become a crucial and widely adopted tool in the battle against electricity grid failures around the world. Still the most accurate wide area measurement (WAMS) technology for power systems, synchronized phasor measurements have become increasingly sophisticated and useful for system monitoring, as the advent of big data storage allows for more nuanced real-time analysis, allowing operators to predict, prevent and mitigate the impacts of blackouts with enhanced accuracy and effectiveness. This new edition continues to provide the most encompassing overview of the technology from its pioneers, and has been expanded and updated to include all the applications and optimizations of the last decade.
The second edition of this must-have reference covers power quality issues in four parts, including new discussions related to renewable energy systems. The first part of the book provides background on causes, effects, standards, and measurements of power quality and harmonics. Once the basics are established the authors move on to harmonic modeling of power systems, including components and apparatus (electric machines). The final part of the book is devoted to power quality mitigation approaches and devices, and the fourth part extends the analysis to power quality solutions for renewable energy systems. Throughout the book worked examples and exercises provide practical applications, and tables, charts, and graphs offer useful data for the modeling and analysis of power quality issues. - Provides theoretical and practical insight into power quality problems of electric machines and systems - 134 practical application (example) problems with solutions - 125 problems at the end of chapters dealing with practical applications - 924 references, mostly journal articles and conference papers, as well as national and international standards and guidelines
The modern electric power system has evolved into a huge nonlinear complex system due to the interconnection of thousands of generation and transmission systems. The unparalleled growth of renewable energy resources (RESs) has caused significant concern regarding grid stability and power quality, and it is essential to find ways to control such a massive system for effective operation. The controllability of HVDC and FACTS devices allows for improvement of the dynamic behavior of grids and their flexibility. Research is being carried out at both the system and component levels of modelling, control, and stability. This Special Issue aims to present novel HVDC topologies and operation strategies to prevent abnormal grid conditions.
A practical, application-oriented text that presents analytical results for the better modeling and control of power converters in the integration of green energy in electric power systems The combined technology of power semiconductor switching devices, pulse width modulation algorithms, and control theories are being further developed along with the performance improvement of power semiconductors and microprocessors so that more efficient, reliable, and cheaper electric energy conversion can be achieved within the next decade. Integration of Green and Renewable Energy in Electric Power Systems covers the principles, analysis, and synthesis of closed loop control of pulse width modulated converters in power electronics systems, with special application emphasis on distributed generation systems and uninterruptible power supplies. The authors present two versions of a documented simulation test bed for homework problems and projects based on Matlab/Simulink, designed to help readers understand the content through simulations. The first consists of a number of problems and projects for classroom teaching convenience and learning. The second is based on the most recent work in control of power converters for the research of practicing engineers and industry researchers. Addresses a combination of the latest developments in control technology of pulse width modulation algorithms and digital control methods Problems and projects have detailed mathematical modeling, control design, solution steps, and results Uses a significant number of tables, circuit and block diagrams, and waveform plots with well-designed, class-tested problems/solutions and projects designed for the best teaching-learning interaction Provides computer simulation programs as examples for ease of understanding and platforms for the projects Covering major power-conversion applications that help professionals from a variety of industries, Integration of Green and Renewable Energy in Electric Power Systems provides practical, application-oriented system analysis and synthesis that is instructional and inspiring for practicing electrical engineers and researchers as well as undergraduate and graduate students.
Today, engineering systems are an important element of the world economy and each year billions of dollars are spent to develop, manufacture, operate, and maintain various types of engineering systems around the globe. Many of these systems are highly sophisticated and contain millions of parts. For example, a Boeing jumbo 747 is made up of approximately 4.5 million parts including fasteners. Needless to say, reliability, safety, and maintenance of systems such as this have become more important than ever before. Global competition and other factors are forcing manufacturers to produce highly reliable, safe, and maintainable engineering products. Therefore, there is a definite need for the reliability, safety, and maintenance professionals to work closely during design and other phases. Engineering Systems Reliability, Safety, and Maintenance: An Integrated Approach eliminates the need to consult many different and diverse sources in the hunt for the information required to design better engineering systems.
Creativity is playing an ever more important role in the success or failure of organizations in the global competitive economy. The field of engineering is no exception. The objective of this book is to satisfy this vital need, which has been covered very little elsewhere.The book, which assumes no prior knowledge, will be useful to many people including all kinds of professional engineers, engineering managers, graduate and senior undergraduate students of engineering, and researchers and instructors in engineering, psychology, and business administration. At the end of each chapter there are numerous problems to test readers' comprehension. The book also includes a comprehensive list of references directly or indirectly related to creativity in engineering.