Download Free Problems Of Power Book in PDF and EPUB Free Download. You can read online Problems Of Power and write the review.

Power quality problems have increasingly become a substantial concern over the last decade, but surprisingly few analytical techniques have been developed to overcome these disturbances in system-equipment interactions. Now in this comprehensive book, power engineers and students can find the theoretical background necessary for understanding how to analyze, predict, and mitigate the two most severe power disturbances: voltage sags and interruptions. This is the first book to offer in-depth analysis of voltage sags and interruptions and to show how to apply mathematical techniques for practical solutions to these disturbances. From UNDERSTANDING AND SOLVING POWER QUALITY PROBLEMS you will gain important insights into Various types of power quality phenomena and power quality standards Current methods for power system reliability evaluation Origins of voltage sags and interruptions Essential analysis of voltage sags for characterization and prediction of equipment behavior and stochastic prediction Mitigation methods against voltage sags and interruptions Sponsored by: IEEE Power Electronics Society, IEEE Industry Applications Society, IEEE Power Engineering Society.
This book presents integrated optimization methods and algorithms for power system problems along with their codes in MATLAB. Providing a reliable and secure power and energy system is one of the main challenges of the new era. Due to the nonlinear multi-objective nature of these problems, the traditional methods are not suitable approaches for solving large-scale power system operation dilemmas. The integration of optimization algorithms into power systems has been discussed in several textbooks, but this is the first to include the integration methods and the developed codes. As such, it is a useful resource for undergraduate and graduate students, researchers and engineers trying to solve power and energy optimization problems using modern technical and intelligent systems based on theory and application case studies. It is expected that readers have a basic mathematical background.
Maintaining a stable level of power quality in the distribution network is a growing challenge due to increased use of power electronics converters in domestic, commercial and industrial sectors. Power quality deterioration is manifested in increased losses; poor utilization of distribution systems; mal-operation of sensitive equipment and disturbances to nearby consumers, protective devices, and communication systems. However, as the energy-saving benefits will result in increased AC power processed through power electronics converters, there is a compelling need for improved understanding of mitigation techniques for power quality problems. This timely book comprehensively identifies, classifies, analyses and quantifies all associated power quality problems, including the direct integration of renewable energy sources in the distribution system, and systematically delivers mitigation techniques to overcome these problems. Key features: • Emphasis on in-depth learning of the latest topics in power quality extensively illustrated with waveforms and phasor diagrams. • Essential theory supported by solved numerical examples, review questions, and unsolved numerical problems to reinforce understanding. • Companion website contains solutions to unsolved numerical problems, providing hands-on experience. Senior undergraduate and graduate electrical engineering students and instructors will find this an invaluable resource for education in the field of power quality. It will also support continuing professional development for practicing engineers in distribution and transmission system operators.
Looks at the clash between gas/oil proponents and supports of alternative energies and offers a plan for the future that combines the best of both worlds.
This book examines the problems of power systems in fields related to optimization of operating modes of electric power facilities and their control systems, information and measuring systems and metrological support in the electric power industry, ensuring the functioning of the electric power system in the conditions of a competitive market of the electric power. The book is devoted to modern problems ensuring operational reliability and safety of objects integrated power system of Ukraine. It is complex task, solution of which is related to optimization of operating modes of electric power facilities and their control systems, creating diagnostic systems for the electric power industry, ensuring the functioning of the electric power system in the conditions of a competitive market of the electric power. The presented research results in book allow increasing the reliability and efficiency of operation of energy facilities and ensuring the stability of power systems, the introduction of effective methods and tools for forecasting electricity supply, optimize power systems, suggest road map to integrate electricity markets taking into account network constraints in modern conditions of electricity markets. The book includes eight chapters. A book is for researchers, engineers, as well as lecturers and postgraduates of higher education institutions dealing with problems of operation, control, diagnosis and monitoring of integrated power system, power equipment and other.
The book provides a comprehensive taxonomy of non-symmetrical eigenvalues problems as applied to power systems. The book bases all formulations on mathematical concept of “matrix pencils” (MPs) and considers both regular and singular MPs for the eigenvalue problems. Each eigenvalue problem is illustrated with a variety of examples based on electrical circuits and/or power system models and controllers and related data are provided in the appendices of the book. Numerical methods for the solution of all considered eigenvalue problems are discussed. The focus is on large scale problems and, hence, attention is dedicated to the performance and scalability of the methods. The target of the book are researchers and graduated students in Electrical & Computer Science Engineering, both taught and research Master programmes as well as PhD programmes and it: explains eigenvalue problems applied into electrical power systems explains numerical examples on applying the mathematical methods, into studying small signal stability problems of realistic and large electrical power systems includes detailed and in-depth analysis including non-linear and other advanced aspects provides theoretical understanding and advanced numerical techniques essential for secure operation of power systems provides a comprehensive set of illustrative examples that support theoretical discussions
In latter years, energy efficiency has become a crucial concern for every transportation mode, but it is in electrified railways where energy savings have shown a bigger potential due to (i) regenerative braking, that allows converting kinetic energy into electric power, and (ii) vehicle interconnection, that allows other trains to use regenerated power. Power supply and energy management will continue to develop in the future. This book gathers under a single cover several papers published in the Computer on Railways series (IX, X and XI) and focuses on power supply and energy management. Some of the discussed themes are: modelling, simulation and optimisation of AC and DC infrastructure, analysis of rolling stock consumption, and innovative approaches in power supply operation. This book will be invaluable to management consultants, engineers, planners, designers, manufacturers, operators and IT specialists who need to keep abreast of the latest developments in the field.
Sustainable Power Generation: Current Status, Future Challenges, and Perspectives addresses emerging problems faced by the transition to sustainable electricity generation and combines perspectives of engineering and economics to provide a well-rounded overview. This book features an in-depth discussion of the main aspects of sustainable energy and the infrastructure of existing technologies. It goes on to evaluate natural resources that are sustainable and convenient forms of energy, and finishes with an investigation of the environmental effects of energy systems and power generating systems of the future. Other sections tackle fundamental topics such as thermal power, nuclear energy, bioenergy, hydropower, challenges and risks to sustainable options, and emerging technologies that support global power trends. Sustainable Power Generation explores the future of sustainable electricity generation, highlighting topics such as energy justice, emerging competences, and major transitions that need to be navigated. This is an ideal reference for researchers, engineers, and other technical specialists working in the energy sector, as well as environmental specialists and policy makers.