Download Free Problems For Mathematicians Young And Old Book in PDF and EPUB Free Download. You can read online Problems For Mathematicians Young And Old and write the review.

A collection of math problems for people of varying skills from high school through professional level, organized into fourteen categories such as matrices, space, probability, and puzzles, and including hints and solutions.
A collection of math problems for people of varying skills from high school through professional level, organized into fourteen categories, such as matrices, space, probability, and puzzles, and including hints and solutions.
“Witty, compelling, and just plain fun to read . . ." —Evelyn Lamb, Scientific American The Freakonomics of math—a math-world superstar unveils the hidden beauty and logic of the world and puts its power in our hands The math we learn in school can seem like a dull set of rules, laid down by the ancients and not to be questioned. In How Not to Be Wrong, Jordan Ellenberg shows us how terribly limiting this view is: Math isn’t confined to abstract incidents that never occur in real life, but rather touches everything we do—the whole world is shot through with it. Math allows us to see the hidden structures underneath the messy and chaotic surface of our world. It’s a science of not being wrong, hammered out by centuries of hard work and argument. Armed with the tools of mathematics, we can see through to the true meaning of information we take for granted: How early should you get to the airport? What does “public opinion” really represent? Why do tall parents have shorter children? Who really won Florida in 2000? And how likely are you, really, to develop cancer? How Not to Be Wrong presents the surprising revelations behind all of these questions and many more, using the mathematician’s method of analyzing life and exposing the hard-won insights of the academic community to the layman—minus the jargon. Ellenberg chases mathematical threads through a vast range of time and space, from the everyday to the cosmic, encountering, among other things, baseball, Reaganomics, daring lottery schemes, Voltaire, the replicability crisis in psychology, Italian Renaissance painting, artificial languages, the development of non-Euclidean geometry, the coming obesity apocalypse, Antonin Scalia’s views on crime and punishment, the psychology of slime molds, what Facebook can and can’t figure out about you, and the existence of God. Ellenberg pulls from history as well as from the latest theoretical developments to provide those not trained in math with the knowledge they need. Math, as Ellenberg says, is “an atomic-powered prosthesis that you attach to your common sense, vastly multiplying its reach and strength.” With the tools of mathematics in hand, you can understand the world in a deeper, more meaningful way. How Not to Be Wrong will show you how.
Vladimir Arnold (1937-2010) was one of the great mathematical minds of the late 20th century. He did significant work in many areas of the field. On another level, he was keeping with a strong tradition in Russian mathematics to write for and to directly teach younger students interested in mathematics. This book contains some examples of Arnold's contributions to the genre. "Continued Fractions" takes a common enrichment topic in high school math and pulls it in directions that only a master of mathematics could envision. "Euler Groups" treats a similar enrichment topic, but it is rarely treated with the depth and imagination lavished on it in Arnold's text. He sets it in a mathematical context, bringing to bear numerous tools of the trade and expanding the topic way beyond its usual treatment. In "Complex Numbers" the context is physics, yet Arnold artfully extracts the mathematical aspects of the discussion in a way that students can understand long before they master the field of quantum mechanics. "Problems for Children 5 to 15 Years Old" must be read as a collection of the author's favorite intellectual morsels. Many are not original, but all are worth thinking about, and each requires the solver to think out of his or her box. Dmitry Fuchs, a long-term friend and collaborator of Arnold, provided solutions to some of the problems. Readers are of course invited to select their own favorites and construct their own favorite solutions. In reading these essays, one has the sensation of walking along a path that is found to ascend a mountain peak and then being shown a vista whose existence one could never suspect from the ground. Arnold's style of exposition is unforgiving. The reader--even a professional mathematician--will find paragraphs that require hours of thought to unscramble, and he or she must have patience with the ellipses of thought and the leaps of reason. These are all part of Arnold's intent. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
Math rocks! At least it does in the gifted hands of Sean Connolly, who blends middle school math with fantasy to create an exciting adventure in problem-solving. These word problems are perilous, do-or-die scenarios of blood-sucking vampires (How many months would it take a single vampire to completely take over a town of 500,000 people?), or a rowboat of 5 shipwrecked sailors with a single barrel of freshwater (How much can they drink, and for how long, before they go mad from thirst???). Each problem requires readers to dig deep into the tools they’re learning in school to figure out how to survive. Kids will love solving these problems. Sean Connolly knows how to make tough subjects exciting and he brings that same intuitive understanding of what inspires and challenges kids’ curiosity to the 24 problems in The Book of Perfectly Perilous Math. These problems are as fun to read as they are challenging to solve. They test readers on fractions, algebra, geometry, probability, expressions and equations, and more. Use geometry to fill in for the ship’s navigator and make it safely to the New World. Escape an evil Duke’s executioner by picking the right door—probability will save your neck.
Vladimir Arnold is one of the most outstanding mathematicians of our time Many of these problems are at the front line of current research
"The ancient Greeks argued that the best life was filled with beauty, truth, justice, play and love. The mathematician Francis Su knows just where to find them."--Kevin Hartnett, Quanta Magazine" This is perhaps the most important mathematics book of our time. Francis Su shows mathematics is an experience of the mind and, most important, of the heart."--James Tanton, Global Math Project For mathematician Francis Su, a society without mathematical affection is like a city without concerts, parks, or museums. To miss out on mathematics is to live without experiencing some of humanity's most beautiful ideas. In this profound book, written for a wide audience but especially for those disenchanted by their past experiences, an award-winning mathematician and educator weaves parables, puzzles, and personal reflections to show how mathematics meets basic human desires--such as for play, beauty, freedom, justice, and love--and cultivates virtues essential for human flourishing. These desires and virtues, and the stories told here, reveal how mathematics is intimately tied to being human. Some lessons emerge from those who have struggled, including philosopher Simone Weil, whose own mathematical contributions were overshadowed by her brother's, and Christopher Jackson, who discovered mathematics as an inmate in a federal prison. Christopher's letters to the author appear throughout the book and show how this intellectual pursuit can--and must--be open to all.
Authored by a leading name in mathematics, this engaging and clearly presented text leads the reader through the tactics involved in solving mathematical problems at the Mathematical Olympiad level. With numerous exercises and assuming only basic mathematics, this text is ideal for students of 14 years and above in pure mathematics.