Download Free Problem Posing And Problem Solving In Mathematics Education Book in PDF and EPUB Free Download. You can read online Problem Posing And Problem Solving In Mathematics Education and write the review.

The mathematics education community continues to contribute research-based ideas for developing and improving problem posing as an inquiry-based instructional strategy for enhancing students’ learning. A large number of studies have been conducted which have covered many research topics and methodological aspects of teaching and learning mathematics through problem posing. The Authors' groundwork has shown that many of these studies predict positive outcomes from implementing problem posing on: student knowledge, problem solving and posing skills, creativity and disposition toward mathematics. This book examines, in-depth, the contribution of a problem posing approach to teaching mathematics and discusses the impact of adopting this approach on the development of theoretical frameworks, teaching practices and research on mathematical problem posing over the last 50 years. ​​
This book collects recent research on posing and solving mathematical problems. Rather than treating these two crucial aspects of school mathematics as separate areas of study, the authors approach them as a unit where both areas are measured on equal grounds in relation to each other. The contributors are from a vast variety of countries and with a wide range of experience; it includes the work from many of the leading researchers in the area and an important number of young researchers. The book is divided in three parts, one directed to new research perspectives and the other two directed to teachers and students, respectively.
This survey book reviews four interrelated areas: (i) the relevance of heuristics in problem-solving approaches – why they are important and what research tells us about their use; (ii) the need to characterize and foster creative problem-solving approaches – what type of heuristics helps learners devise and practice creative solutions; (iii) the importance that learners formulate and pursue their own problems; and iv) the role played by the use of both multiple-purpose and ad hoc mathematical action types of technologies in problem-solving contexts – what ways of reasoning learners construct when they rely on the use of digital technologies, and how technology and technology approaches can be reconciled.
This book encourages readers to shift their thinking about problem posing from the "other" to themselves (i.e. that they can develop problems themselves) and offers a broader conception of what can be done with problems.
As a result of the editors' collaborative teaching at Harvard in the late 1960s, they produced a ground-breaking work -- The Art Of Problem Posing -- which related problem posing strategies to the already popular activity of problem solving. It took the concept of problem posing and created strategies for engaging in that activity as a central theme in mathematics education. Based in part upon that work and also upon a number of articles by its authors, other members of the mathematics education community began to apply and expand upon their ideas. This collection of thirty readings is a testimony to the power of the ideas that originally appeared. In addition to reproducing relevant materials, the editors of this book of readings have included a considerable amount of interpretive text which places the articles in the context of problem solving. While the preponderance of essays focus upon mathematics and mathematics education, some of them point to the relevance of problem posing to other fields such as biology or psychology. In the interpretive text that accompanies each chapter, they indicate how ideas expressed for one audience may be revisited or transformed in order to ready them for a variety of audiences.
Are you having trouble in finding Tier II intervention materials for elementary students who are struggling in math? Are you hungry for effective instructional strategies that will address students’ conceptual gap in additive and multiplicative math problem solving? Are you searching for a powerful and generalizable problem solving approach that will help those who are left behind in meeting the Common Core State Standards for Mathematics (CCSSM)? If so, this book is the answer for you. • The conceptual model-based problem solving (COMPS) program emphasizes mathematical modeling and algebraic representation of mathematical relations in equations, which are in line with the new Common Core. • “Through building most fundamental concepts pertinent to additive and multiplicative reasoning and making the connection between concrete and abstract modeling, students were prepared to go above and beyond concrete level of operation and be able to use mathematical models to solve more complex real-world problems. As the connection is made between the concrete model (or students’ existing knowledge scheme) and the symbolic mathematical algorithm, the abstract mathematical models are no longer “alien” to the students.” As Ms. Karen Combs, Director of Elementary Education of Lafayette School Corporation in Indiana, testified: “It really worked with our kids!” • “One hallmark of mathematical understanding is the ability to justify,... why a particular mathematical statement is true or where a mathematical rule comes from” (http://illustrativemathematics.org/standards). Through making connections between mathematical ideas, the COMPS program makes explicit the reasoning behind math, which has the potential to promote a powerful transfer of knowledge by applying the learned conception to solve other problems in new contexts. • Dr. Yan Ping Xin’s book contains essential tools for teachers to help students with learning disabilities or difficulties close the gap in mathematics word problem solving. I have witnessed many struggling students use these strategies to solve word problems and gain confidence as learners of mathematics. This book is a valuable resource for general and special education teachers of mathematics. - Casey Hord, PhD, University of Cincinnati
This book presents both theoretical and empirical contributions from a global perspective on problem solving and posing (PS/PP) and their application, in relation to the teaching and learning of mathematics in schools. The chapters are derived from selected presentations in the PS/PP Topical Study Group in ICME14. Although mathematical problem posing is a much younger field of inquiry in mathematics education, this topic has grown rapidly. The mathematics curriculum frameworks in many parts of the world have incorporated problem posing as an instructional focus, building on problem solving as its foundation. The juxtaposition of problem solving and problem posing in mathematics presented in this book addresses the needs of the mathematics education research and practice communities at the present day. In particular, this book aims to address the three key points: to present an overview of research and development regarding students’ mathematical problem solving and posing; to discuss new trends and developments in research and practice on these topics; and to provide insight into the future trends of mathematical problem solving and posing.
This book presents both theoretical and empirical contributions from a global perspective on problem solving and posing (PS/PP) and their application, in relation to the teaching and learning of mathematics in schools. The chapters are derived from selected presentations in the PS/PP Topical Study Group in ICME14. Although mathematical problem posing is a much younger field of inquiry in mathematics education, this topic has grown rapidly. The mathematics curriculum frameworks in many parts of the world have incorporated problem posing as an instructional focus, building on problem solving as its foundation. The juxtaposition of problem solving and problem posing in mathematics presented in this book addresses the needs of the mathematics education research and practice communities at the present day. In particular, this book aims to address the three key points: to present an overview of research and development regarding students’ mathematical problem solving and posing; to discuss new trends and developments in research and practice on these topics; and to provide insight into the future trends of mathematical problem solving and posing.
This book is addressed to people with research interests in the nature of mathematical thinking at any level, topeople with an interest in "higher-order thinking skills" in any domain, and to all mathematics teachers. The focal point of the book is a framework for the analysis of complex problem-solving behavior. That framework is presented in Part One, which consists of Chapters 1 through 5. It describes four qualitatively different aspects of complex intellectual activity: cognitive resources, the body of facts and procedures at one's disposal; heuristics, "rules of thumb" for making progress in difficult situations; control, having to do with the efficiency with which individuals utilize the knowledge at their disposal; and belief systems, one's perspectives regarding the nature of a discipline and how one goes about working in it. Part Two of the book, consisting of Chapters 6 through 10, presents a series of empirical studies that flesh out the analytical framework. These studies document the ways that competent problem solvers make the most of the knowledge at their disposal. They include observations of students, indicating some typical roadblocks to success. Data taken from students before and after a series of intensive problem-solving courses document the kinds of learning that can result from carefully designed instruction. Finally, observations made in typical high school classrooms serve to indicate some of the sources of students' (often counterproductive) mathematical behavior.