Download Free Probing Interfacial Water Structure Next To Lipid Membranes Using Vibrational Sum Frequency Spectroscopy Book in PDF and EPUB Free Download. You can read online Probing Interfacial Water Structure Next To Lipid Membranes Using Vibrational Sum Frequency Spectroscopy and write the review.

Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Seven Volume Set summarizes current, fundamental knowledge of interfacial chemistry, bringing readers the latest developments in the field. As the chemical and physical properties and processes at solid and liquid interfaces are the scientific basis of so many technologies which enhance our lives and create new opportunities, its important to highlight how these technologies enable the design and optimization of functional materials for heterogeneous and electro-catalysts in food production, pollution control, energy conversion and storage, medical applications requiring biocompatibility, drug delivery, and more. This book provides an interdisciplinary view that lies at the intersection of these fields. Presents fundamental knowledge of interfacial chemistry, surface science and electrochemistry and provides cutting-edge research from academics and practitioners across various fields and global regions
This book describes fundamental theory and recent advances of sum frequency generation (SFG) spectroscopy. SFG spectroscopy is widely used as a powerful tool of surface characterization, although theoretical interpretation of the obtained spectra has been a major bottleneck for most users. Recent advances in SFG theory have brought about a breakthrough in the analysis methods beyond conventional empirical ones, and molecular dynamics (MD) simulation of SFG spectroscopy allows for simultaneous understanding of observed spectra and interface structure in unprecedented detail. This book explains these recently understood theoretical aspects of SFG spectroscopy by the major developer of the theory. The theoretical topics are treated at basic levels for undergraduate students and are described in relation to computational chemistry, such as molecular modeling and MD simulation, toward close collaboration of SFG spectroscopy and computational chemistry in the near future.
This book is about the importance of water in determining the structure, stability and responsive behavior of biological membranes. Water confers to lipid membranes unique features in terms of surface and mechanical properties. The analysis of the hydration forces, plasticiser effects, controlled hydration, formation of microdomains of confined water suggests that water is an active constituent in a water-lipid system. The chapters describe water organization at the lipid membrane–water interphase, the water penetration, the long range water structure in the presence of lipid membranes by means of X-ray and neutron scattering, general polarization, fluorescent probes, ATR-FTIR and near infrared spectroscopies, piezo electric methods, computer simulation and surface thermodynamics. Permeation, percolation, osmotic stress, polarization, protrusion, sorption, hydrophobicity, density fluctuations are treated in detail in self-assembled bilayers. Studies in lipid monolayers show the correlation of surface pressure with water activity and its role in peptide and enzyme interactions. The book concludes with a discussion on anhydrobiosis and the effect of water replacement in microdomains and its consequence for cell function. New definitions of lipid/water interphases consider water not only as a structural-making solvent but as a mediator in signalling metabolic activity, modulating protein insertion and enzymatic activity, triggering oscillatory reactions and functioning of membrane bound receptors. Since these effects occur at the molecular level, membrane hydration appears fundamental to understand the behavior of nano systems and confined environments mimicking biological systems. These insights in structural, thermodynamical and mechanical water properties give a base for new paradigms in membrane structure and function for those interested in biophysics, physical chemistry, biology, bio and nano medicine, biochemistry, biotechnology and nano sciences searching for biotechnological inputs in human health, food industry, plant growing and energy conversion.
The book highlights recent developments in the field of spectroscopy by providing the readers with an updated and high-level of overview. The focus of this book is on the introduction to concepts of modern spectroscopic techniques, recent technological innovations in this field, and current examples of applications to molecules and materials relevant for academia and industry. The book will be beneficial to researchers from various branches of science and technology, and is intended to point them to modern techniques, which might be useful for their specific problems. Spectroscopic techniques, that are discussed include, UV-Visible absorption spectroscopy, XPS, Raman spectroscopy, SERS, TERS, CARS, IR absorption spectroscopy, SFG, LIBS, Quantum cascade laser (QCL) spectroscopy, fluorescence spectroscopy, ellipsometry, cavity-enhanced absorption spectroscopy, such as cavity ring-down spectroscopy (CRDS) and evanescent wave-CRDS both in gas and condensed phases, time-resolved spectroscopy etc. Applications introduced in the different chapters demonstrates the usefulness of the spectroscopic techniques for the characterization of fundamental properties of molecules, e.g. in connection with environmental impact, bio-activity, or usefulness for pharmaceutical drugs, and materials important e.g. for nano-science, nuclear chemistry, or bio-applications. The book presents how spectroscopic techniques can help to better understand substances, which have also great impact on questions of social and economic relevance (environment, alternative energy, etc.).
Ultrafast Phenomena XVI presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh speed communications. This book summarizes the results presented at the 16th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.
This book embraces all physiochemical aspects of the structure and molecular dynamics of water, focusing on its role in biological objects, e.g. living cells and tissue, and in the formation of functionally active structures of biological molecules and their ensembles. Water is the single most abundant chemical found in all living things. It offers a detailed look into the latest modern physical methods for studying the molecular structure and dynamics of the water and provides a critical analysis of the existing literature data on the properties of water in biological objects. Water as a chemical reagent and as a medium for the formation of conditions for enzymatic catalysis is a core focus of this book. Although well suited for active researchers, the book as a whole, as well as each chapter on its own, can be used as fundamental reference material for graduate and undergraduate students throughout chemistry, physics, biophysics and biomedicine.
This book elucidates the mechanisms involved in biological membrane functions. It describes the new modalities and characterization for basic in vitro as well as computer models of biological membranes. Biological membranes are analyzed in terms of advances in molecular dynamics. The individual chapters provide an in depth analysis of images from various biological models. The potential of membrane models in the context of treatment trials is discussed. The authors present new insights and current concepts for treatment procedures (nanocarriers, electroporation, channel blockers).
The Encyclopedia of Modern Optics, Second Edition, Five Volume Set provides a wide-ranging overview of the field, comprising authoritative reference articles for undergraduate and postgraduate students and those researching outside their area of expertise. Topics covered include classical and quantum optics, lasers, optical fibers and optical fiber systems, optical materials and light-emitting diodes (LEDs). Articles cover all subfields of optical physics and engineering, such as electro-optical design of modulators and detectors. This update contains contributions from international experts who discuss topics such as nano-photonics and plasmonics, optical interconnects, photonic crystals and 2D materials, such as graphene or holy fibers. Other topics of note include solar energy, high efficiency LED’s and their use in illumination, orbital angular momentum, quantum optics and information, metamaterials and transformation optics, high power fiber and UV fiber lasers, random lasers and bio-imaging. Addresses recent developments in the field and integrates concepts from fundamental physics with applications for manufacturing and engineering/design Provides a broad and interdisciplinary coverage of specialist areas Ensures that the material is appropriate for new researchers and those working in a new sub-field, as well as those in industry Thematically arranged and alphabetically indexed, with cross-references added to facilitate ease-of-use
This book is a research monograph summarizing recent advances related to the molecular structure of water and ice, and it is based on the latest spectroscopic data available. A special focus is given to radio- and microwave frequency regions. Within the five interconnected chapters, the author reviews the electromagnetic waves interaction with water, ice, and moist substances, discussing the microscopic mechanisms behind the dielectric responses. Well-established classic views concerning the structure of water and ice are considered along with new approaches related to atomic and molecular dynamics. Particular attention is given to nanofluidics, atmospheric science, and electrochemistry. The mathematical apparatus, based on diverse approaches employed in condensed matter physics, is widely used and allows the reader to quantitatively describe the electrodynamic response of water and ice in both bulk and confined states. This book is intended for a wide audience covering physicists, electrochemists, geophysicists, engineers, biophysicists, and general scientists who work on the electromagnetic radiation interaction with water and moist substances.
Co-edited by world-renowned scientists in the field of catalysis, this book contains the cutting-edge in situ and operando spectroscopy characterization techniques operating under reaction conditions to determine a materials’ bulk, surface, and solution complex and their applications in the field of catalysis with emphasis on solid catalysts in powder form since such catalyst are relevant for industrial applications. The handbook covers from widely-used to cutting-edge techniques. The handbook is written for a broad audience of students and professionals who want to pursue the full capabilities available by the current state-of-the-art in characterization to fully understand how their catalysts really operate and guide the rational design of advanced catalysts. Individuals involved in catalysis research will be interested in this handbook because it contains a catalogue of cutting-edge methods employed in characterization of catalysts. These techniques find wide use in applications such as petroleum refining, chemical manufacture, natural gas conversion, pollution control, transportation, power generation, pharmaceuticals and food processing. fdsfds