Download Free Probing Functional Protein Dynamics Through Native State Hydrogen Exchange Mass Spectrometry Book in PDF and EPUB Free Download. You can read online Probing Functional Protein Dynamics Through Native State Hydrogen Exchange Mass Spectrometry and write the review.

Hydrogen exchange mass spectrometry is widely recognized for its ability to probe the structure and dynamics of proteins. The application of this technique is becoming widespread due to its versatility for providing structural information about challenging biological macromolecules such as antibodies, flexible proteins and glycoproteins. Although the technique has been around for 25 years, this is the first definitive book devoted entirely to the topic. Hydrogen Exchange Mass Spectrometry of Proteins: Fundamentals, Methods and Applications brings into one comprehensive volume the theory, instrumentation and applications of Hydrogen Exchange Mass Spectrometry (HX-MS) - a technique relevant to bioanalytical chemistry, protein science and pharmaceuticals. The book provides a solid foundation in the basics of the technique and data interpretation to inform readers of current research in the method, and provides illustrative examples of its use in bio- and pharmaceutical chemistry and biophysics In-depth chapters on the fundamental theory of hydrogen exchange, and tutorial chapters on measurement and data analysis provide the essential background for those ready to adopt HX-MS. Expert users may advance their current understanding through chapters on methods including membrane protein analysis, alternative proteases, millisecond hydrogen exchange, top-down mass spectrometry, histidine exchange and method validation. All readers can explore the diversity of HX-MS applications in areas such as ligand binding, membrane proteins, drug discovery, therapeutic protein formulation, biocomparability, and intrinsically disordered proteins.
The first systematic summary of biophysical mass spectrometrytechniques Recent advances in mass spectrometry (MS) have pushed the frontiersof analytical chemistry into the biophysical laboratory. As aresult, the biophysical community's acceptance of MS-based methods,used to study protein higher-order structure and dynamics, hasaccelerated the expansion of biophysical MS. Despite this growing trend, until now no single text has presentedthe full array of MS-based experimental techniques and strategiesfor biophysics. Mass Spectrometry in Biophysics expertly closesthis gap in the literature. Covering the theoretical background and technical aspects of eachmethod, this much-needed reference offers an unparalleled overviewof the current state of biophysical MS. Mass Spectrometry inBiophysics begins with a helpful discussion of general biophysicalconcepts and MS-related techniques. Subsequent chaptersaddress: * Modern spectrometric hardware * High-order structure and dynamics as probed by various MS-basedmethods * Techniques used to study structure and behavior of non-nativeprotein states that become populated under denaturingconditions * Kinetic aspects of protein folding and enzyme catalysis * MS-based methods used to extract quantitative information onprotein-ligand interactions * Relation of MS-based techniques to other experimental tools * Biomolecular properties in the gas phase Fully referenced and containing a helpful appendix on the physicsof electrospray mass spectrometry, Mass Spectrometry in Biophysicsalso offers a compelling look at the current challenges facingbiomolecular MS and the potential applications that will likelyshape its future.
Hydrogen deuterium exchange mass spectrometry has emerged as an important technique to probe protein structure and conformational dynamics. The rate of exchange of hydrogen with deuterium by the peptide backbone is dependent on the solvent accessibility, extent of hydrogen bonding in secondary structural elements and protein dynamics. The extent and the rate of deuterium incorporation are affected by changes in protein structure, interaction with ligand, protein-protein interaction and environmental factors such as pH and temperature. These conformational changes can be global and/or local. The increase in the mass is used to localize the deuterium incorporation after pepsin digestion of the protein and analysis by electrospray ionization mass spectrometry. In this dissertation traditional HDX-MS and a new deuterium trapping assay were used to probe the interaction sites between E. coli cysteine desulfurase SufS and acceptor protein SufE. SufS and SufE form an important part of the SUF pathway, essential for the biosynthesis of Fe-S clusters under oxidative stress and iron depletion conditions. In addition, SufE is known to stimulate SufS cysteine desulfurase activity, but the mechanism is unknown. The HDX-MS results show that the regions affected by the SufS-SufE interaction are dependent on the catalytic intermediate states of the two proteins. HDX-MS was also used to probe the conformational changes resulting upon persulfuration of SufS of Cys364 in the active site. The persulfuration of SufS not only affected regions in the active site cavity, but also had other conformational changes in more distal regions. Based on our findings a model for the interaction SufS and SufE was proposed. A mechanism for the enhancement of SufS cysteine desulfurase activity upon interaction with SufE was also postulated. In all this work demonstrates that hydrogen deuterium exchange mass spectrometry and the deuterium trapping methodology optimized for this system can be easily and effectively used to study the protein-protein interactions and the accompanying changes in structural dynamics for other proteins. Deuterium trapping was demonstrated to be fast, sensitive and reliable method to deduce the changes in solvent accessibility between two or more states of a protein. Both techniques can easily be applied to large number of protein complexes to determine the regions of interaction as well as gain mechanistic information not available through traditional methods such as X-ray crystallography and NMR.
Presents a wide variety of mass spectrometry methods used to explore structural mechanisms, protein dynamics and interactions between proteins. Preliminary chapters cover mass spectrometry methods for examining proteins and are then followed by chapters devoted to presenting very practical, how-to methods in a detailed way. Includes footprinting and plistex specifically, setting this book apart from the competition.