Download Free Probability And Statistics With Reliability Queuing And Computer Science Applications Book in PDF and EPUB Free Download. You can read online Probability And Statistics With Reliability Queuing And Computer Science Applications and write the review.

An accessible introduction to probability, stochastic processes, and statistics for computer science and engineering applications Second edition now also available in Paperback. This updated and revised edition of the popular classic first edition relates fundamental concepts in probability and statistics to the computer sciences and engineering. The author uses Markov chains and other statistical tools to illustrate processes in reliability of computer systems and networks, fault tolerance, and performance. This edition features an entirely new section on stochastic Petri nets—as well as new sections on system availability modeling, wireless system modeling, numerical solution techniques for Markov chains, and software reliability modeling, among other subjects. Extensive revisions take new developments in solution techniques and applications into account and bring this work totally up to date. It includes more than 200 worked examples and self-study exercises for each section. Probability and Statistics with Reliability, Queuing and Computer Science Applications, Second Edition offers a comprehensive introduction to probability, stochastic processes, and statistics for students of computer science, electrical and computer engineering, and applied mathematics. Its wealth of practical examples and up-to-date information makes it an excellent resource for practitioners as well. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
An accessible introduction to probability, stochastic processes, and statistics for computer science and engineering applications Second edition now also available in Paperback. This updated and revised edition of the popular classic first edition relates fundamental concepts in probability and statistics to the computer sciences and engineering. The author uses Markov chains and other statistical tools to illustrate processes in reliability of computer systems and networks, fault tolerance, and performance. This edition features an entirely new section on stochastic Petri nets—as well as new sections on system availability modeling, wireless system modeling, numerical solution techniques for Markov chains, and software reliability modeling, among other subjects. Extensive revisions take new developments in solution techniques and applications into account and bring this work totally up to date. It includes more than 200 worked examples and self-study exercises for each section. Probability and Statistics with Reliability, Queuing and Computer Science Applications, Second Edition offers a comprehensive introduction to probability, stochastic processes, and statistics for students of computer science, electrical and computer engineering, and applied mathematics. Its wealth of practical examples and up-to-date information makes it an excellent resource for practitioners as well. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
An accessible introduction to probability, stochastic processes, and statistics for computer science and engineering applications Second edition now also available in Paperback. This updated and revised edition of the popular classic first edition relates fundamental concepts in probability and statistics to the computer sciences and engineering. The author uses Markov chains and other statistical tools to illustrate processes in reliability of computer systems and networks, fault tolerance, and performance. This edition features an entirely new section on stochastic Petri nets—as well as new sections on system availability modeling, wireless system modeling, numerical solution techniques for Markov chains, and software reliability modeling, among other subjects. Extensive revisions take new developments in solution techniques and applications into account and bring this work totally up to date. It includes more than 200 worked examples and self-study exercises for each section. Probability and Statistics with Reliability, Queuing and Computer Science Applications, Second Edition offers a comprehensive introduction to probability, stochastic processes, and statistics for students of computer science, electrical and computer engineering, and applied mathematics. Its wealth of practical examples and up-to-date information makes it an excellent resource for practitioners as well. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
This book provides an introduction to probability, stochastic processes, and statistics for students of computer science, electrical/computer engineering, reliability engineering and applied mathematics. It prepares the student for solving practical stochastic modelling problems, and for the more advanced courses on queuing or reliability theory. The text emphasizes on applications, illustrating each theoretical concept by solved examples relating to algorithm analysis or communication related problems.The prerequisites are a knowledge of calculus, a course on introduction to computer programming, and an understanding of computer organization. The book is also suitable for self-study by computer professionals and mathematicians interested in applications.
Provides a comprehensive introduction to probability with an emphasis on computing-related applications This self-contained new and extended edition outlines a first course in probability applied to computer-related disciplines. As in the first edition, experimentation and simulation are favoured over mathematical proofs. The freely down-loadable statistical programming language R is used throughout the text, not only as a tool for calculation and data analysis, but also to illustrate concepts of probability and to simulate distributions. The examples in Probability with R: An Introduction with Computer Science Applications, Second Edition cover a wide range of computer science applications, including: testing program performance; measuring response time and CPU time; estimating the reliability of components and systems; evaluating algorithms and queuing systems. Chapters cover: The R language; summarizing statistical data; graphical displays; the fundamentals of probability; reliability; discrete and continuous distributions; and more. This second edition includes: improved R code throughout the text, as well as new procedures, packages and interfaces; updated and additional examples, exercises and projects covering recent developments of computing; an introduction to bivariate discrete distributions together with the R functions used to handle large matrices of conditional probabilities, which are often needed in machine translation; an introduction to linear regression with particular emphasis on its application to machine learning using testing and training data; a new section on spam filtering using Bayes theorem to develop the filters; an extended range of Poisson applications such as network failures, website hits, virus attacks and accessing the cloud; use of new allocation functions in R to deal with hash table collision, server overload and the general allocation problem. The book is supplemented with a Wiley Book Companion Site featuring data and solutions to exercises within the book. Primarily addressed to students of computer science and related areas, Probability with R: An Introduction with Computer Science Applications, Second Edition is also an excellent text for students of engineering and the general sciences. Computing professionals who need to understand the relevance of probability in their areas of practice will find it useful.
Learn about the techniques used for evaluating the reliability and availability of engineered systems with this comprehensive guide.
Student-Friendly Coverage of Probability, Statistical Methods, Simulation, and Modeling Tools Incorporating feedback from instructors and researchers who used the previous edition, Probability and Statistics for Computer Scientists, Second Edition helps students understand general methods of stochastic modeling, simulation, and data analysis; make optimal decisions under uncertainty; model and evaluate computer systems and networks; and prepare for advanced probability-based courses. Written in a lively style with simple language, this classroom-tested book can now be used in both one- and two-semester courses. New to the Second Edition Axiomatic introduction of probability Expanded coverage of statistical inference, including standard errors of estimates and their estimation, inference about variances, chi-square tests for independence and goodness of fit, nonparametric statistics, and bootstrap More exercises at the end of each chapter Additional MATLAB® codes, particularly new commands of the Statistics Toolbox In-Depth yet Accessible Treatment of Computer Science-Related Topics Starting with the fundamentals of probability, the text takes students through topics heavily featured in modern computer science, computer engineering, software engineering, and associated fields, such as computer simulations, Monte Carlo methods, stochastic processes, Markov chains, queuing theory, statistical inference, and regression. It also meets the requirements of the Accreditation Board for Engineering and Technology (ABET). Encourages Practical Implementation of Skills Using simple MATLAB commands (easily translatable to other computer languages), the book provides short programs for implementing the methods of probability and statistics as well as for visualizing randomness, the behavior of random variables and stochastic processes, convergence results, and Monte Carlo simulations. Preliminary knowledge of MATLAB is not required. Along with numerous computer science applications and worked examples, the text presents interesting facts and paradoxical statements. Each chapter concludes with a short summary and many exercises.
Critically acclaimed text for computer performance analysis--now in its second edition The Second Edition of this now-classic text provides a current and thorough treatment of queueing systems, queueing networks, continuous and discrete-time Markov chains, and simulation. Thoroughly updated with new content, as well as new problems and worked examples, the text offers readers both the theory and practical guidance needed to conduct performance and reliability evaluations of computer, communication, and manufacturing systems. Starting with basic probability theory, the text sets the foundation for the more complicated topics of queueing networks and Markov chains, using applications and examples to illustrate key points. Designed to engage the reader and build practical performance analysis skills, the text features a wealth of problems that mirror actual industry challenges. New features of the Second Edition include: * Chapter examining simulation methods and applications * Performance analysis applications for wireless, Internet, J2EE, and Kanban systems * Latest material on non-Markovian and fluid stochastic Petri nets, as well as solution techniques for Markov regenerative processes * Updated discussions of new and popular performance analysis tools, including ns-2 and OPNET * New and current real-world examples, including DiffServ routers in the Internet and cellular mobile networks With the rapidly growing complexity of computer and communication systems, the need for this text, which expertly mixes theory and practice, is tremendous. Graduate and advanced undergraduate students in computer science will find the extensive use of examples and problems to be vital in mastering both the basics and the fine points of the field, while industry professionals will find the text essential for developing systems that comply with industry standards and regulations.
Integrating interesting and widely used concepts of financial engineering into traditional statistics courses, Introduction to Probability and Statistics for Science, Engineering, and Finance illustrates the role and scope of statistics and probability in various fields. The text first introduces the basics needed to understand and create
Performance and Reliability Analysis of Computer Systems: An Example-Based Approach Using the SHARPE Software Package provides a variety of probabilistic, discrete-state models used to assess the reliability and performance of computer and communication systems. The models included are combinatorial reliability models (reliability block diagrams, fault trees and reliability graphs), directed, acyclic task precedence graphs, Markov and semi-Markov models (including Markov reward models), product-form queueing networks and generalized stochastic Petri nets. A practical approach to system modeling is followed; all of the examples described are solved and analyzed using the SHARPE tool. In structuring the book, the authors have been careful to provide the reader with a methodological approach to analytical modeling techniques. These techniques are not seen as alternatives but rather as an integral part of a single process of assessment which, by hierarchically combining results from different kinds of models, makes it possible to use state-space methods for those parts of a system that require them and non-state-space methods for the more well-behaved parts of the system. The SHARPE (Symbolic Hierarchical Automated Reliability and Performance Evaluator) package is the `toolchest' that allows the authors to specify stochastic models easily and solve them quickly, adopting model hierarchies and very efficient solution techniques. All the models described in the book are specified and solved using the SHARPE language; its syntax is described and the source code of almost all the examples discussed is provided. Audience: Suitable for use in advanced level courses covering reliability and performance of computer and communications systems and by researchers and practicing engineers whose work involves modeling of system performance and reliability.