Download Free Probability And Information Theory Book in PDF and EPUB Free Download. You can read online Probability And Information Theory and write the review.

This new and updated textbook is an excellent way to introduce probability and information theory to students new to mathematics, computer science, engineering, statistics, economics, or business studies. Only requiring knowledge of basic calculus, it begins by building a clear and systematic foundation to probability and information. Classic topics covered include discrete and continuous random variables, entropy and mutual information, maximum entropy methods, the central limit theorem and the coding and transmission of information. Newly covered for this edition is modern material on Markov chains and their entropy. Examples and exercises are included to illustrate how to use the theory in a wide range of applications, with detailed solutions to most exercises available online for instructors.
Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.
Probability theory
Highly useful text studies logarithmic measures of information and their application to testing statistical hypotheses. Includes numerous worked examples and problems. References. Glossary. Appendix. 1968 2nd, revised edition.
Information Theory: Coding Theorems for Discrete Memoryless Systems presents mathematical models that involve independent random variables with finite range. This three-chapter text specifically describes the characteristic phenomena of information theory. Chapter 1 deals with information measures in simple coding problems, with emphasis on some formal properties of Shannon's information and the non-block source coding. Chapter 2 describes the properties and practical aspects of the two-terminal systems. This chapter also examines the noisy channel coding problem, the computation of channel capacity, and the arbitrarily varying channels. Chapter 3 looks into the theory and practicality of multi-terminal systems. This book is intended primarily for graduate students and research workers in mathematics, electrical engineering, and computer science.
This book is devoted to the theory of probabilistic information measures and their application to coding theorems for information sources and noisy channels. The eventual goal is a general development of Shannon's mathematical theory of communication, but much of the space is devoted to the tools and methods required to prove the Shannon coding theorems. These tools form an area common to ergodic theory and information theory and comprise several quantitative notions of the information in random variables, random processes, and dynamical systems. Examples are entropy, mutual information, conditional entropy, conditional information, and discrimination or relative entropy, along with the limiting normalized versions of these quantities such as entropy rate and information rate. Much of the book is concerned with their properties, especially the long term asymptotic behavior of sample information and expected information. This is the only up-to-date treatment of traditional information theory emphasizing ergodic theory.
From the reviews: "This book nicely complements the existing literature on information and coding theory by concentrating on arbitrary nonstationary and/or nonergodic sources and channels with arbitrarily large alphabets. Even with such generality the authors have managed to successfully reach a highly unconventional but very fertile exposition rendering new insights into many problems." -- MATHEMATICAL REVIEWS
Introducing many innovations in content and methods, this book involves the foundations, basic concepts, and fundamental results of probability theory. Geared toward readers seeking a firm basis for study of mathematical statistics or information theory, it also covers the mathematical notions of experiments and independence. 1970 edition.