Download Free Probabilistic Mechanics Of Quasibrittle Structures Strength Book in PDF and EPUB Free Download. You can read online Probabilistic Mechanics Of Quasibrittle Structures Strength and write the review.

This book presents an experimentally validated probabilistic strength theory of structures made of concrete, composites, ceramics and other quasibrittle materials.
Many modern engineering structures are composed of brittle heterogenous, or quasibrittle, materials. These include concrete, composites, tough ceramics, rocks, cold asphalt mixtures, and many brittle materials at the microscale. Understanding the failure behavior of these materials is of paramount importance for improving the resilience and sustainability of various engineering structures including civil infrastructure, aircraft, ships, military armors, and microelectronic devices. Designed for graduate and upper-level undergraduate university courses, this textbook provides a comprehensive treatment of quasibrittle fracture mechanics. It includes a concise but rigorous examination of linear elastic fracture mechanics, which is the foundation of all fracture mechanics. It also covers the fundamental concepts of nonlinear fracture mechanics, and introduces more advanced concepts such as triaxial stress state in the fracture process zone, nonlocal continuum models, and discrete computational models. Finally, the book features extensive discussion of the various practical applications of quasibrittle fracture mechanics across different structures and engineering disciplines, and throughout includes exercises and problems for students to test their understanding.
The EURO-C conference series (Split 1984, Zell am See 1990, Innsbruck 1994, Badgastein 1998, St. Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St. Anton am Arlberg 2014, and Bad Hofgastein 2018) brings together researchers and practising engineers concerned with theoretical, algorithmic and validation aspects associated with computational simulations of concrete and concrete structures. Computational Modelling of Concrete Structures reviews and discusses research advancements and the applicability and robustness of methods and models for reliable analysis of complex concrete, reinforced concrete and pre-stressed concrete structures in engineering practice. The contributions cover both computational mechanics and computational modelling aspects of the analysis and design of concrete and concrete structures: Multi-scale cement and concrete research: experiments and modelling Aging concrete: from very early ages to decades-long durability Advances in material modelling of plain concrete Analysis of reinforced concrete structures Steel-concrete interaction, fibre-reinforced concrete, and masonry Dynamic behaviour: from seismic retrofit to impact simulation Computational Modelling of Concrete Structures is of special interest to academics and researchers in computational concrete mechanics, as well as industry experts in complex nonlinear simulations of concrete structures.
This comprehensive treatise covers in detail practical methods of analysis as well as advanced mathematical models for structures highly sensitive to creep and shrinkage. Effective computational algorithms for century-long creep effects in structures, moisture diffusion and high temperature effects are presented. The main design codes and recommendations (including RILEM B3 and B4) are critically compared. Statistical uncertainty of century-long predictions is analyzed and its reduction by extrapolation is discussed, with emphasis on updating based on short-time tests and on long-term measurements on existing structures. Testing methods and the statistics of large randomly collected databases are critically appraised and improvements of predictions of multi-decade relaxation of prestressing steel, cyclic creep in bridges, cracking damage, etc., are demonstrated. Important research directions, such as nanomechanical and probabilistic modeling, are identified, and the need for separating the long-lasting autogenous shrinkage of modern concretes from the creep and drying shrinkage data and introducing it into practical prediction models is emphasized. All the results are derived mathematically and justified as much as possible by extensive test data. The theoretical background in linear viscoelasticity with aging is covered in detail. The didactic style makes the book suitable as a textbook. Everything is properly explained, step by step, with a wealth of application examples as well as simple illustrations of the basic phenomena which could alternate as homeworks or exams. The book is of interest to practicing engineers, researchers, educators and graduate students.
This book contains 24 papers presented at the symposium on “Recent Advances in Mechanics” dedicated to the late Professor – Academician Pericles S. Theocaris in commemoration of the tenth anniversary of his death. The papers are written by world renowned and recognized experts in their fields and serve as a reference and guide for future research. The topics covered in the book can be divided into three major themes: Mathematical methods in applied mechanics (nine papers), experimental mechanics (nine papers) and fracture mechanics (six papers). Topics covered include: Application of reciprocity relations to laser-based ultrasonics, boundary value problems of the theory of elasticity, optimal design in contact mechanics, scaling of strength and lifetime distributions of quasibrittle structures, directional distortional hardening in plasticity, vibration of systems, instability phenomena in damped systems, variational methods for static and dynamic elasticity problems, an accelerated Newmark scheme for solving the equations of motion in the time domain, photoelastic tomography, electronic speckle pattern interferometry, composites exposed to fire, sampling moiré, microelecromechanical systems, experimental mechanics in nano-scale, advanced cement based nanocomposites, piezonuclear transmutations in brittle rocks under mechanical loading, stress triaxiality at crack tips studied by caustics, reinforcement of a cracked elastic plate with defects, some actual problems of fracture mechanics, cyclic plasticity with applications to extremely low cycle fatigue of structural steel, and fracture of a highly filled polymer composite.
Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures contains the plenary lectures and papers presented at the 11th International Conference on STRUCTURAL SAFETY AND RELIABILITY (ICOSSAR2013, New York, NY, USA, 16-20 June 2013), and covers major aspects of safety, reliability, risk and life-cycle performance of str
This conference proceedings brings together the work of researchers and practising engineers concerned with computational modelling of complex concrete, reinforced concrete and prestressed concrete structures in engineering practice. The subjects considered include computational mechanics of concrete and other cementitious materials, including masonry. Advanced discretisation methods and microstructural aspects within multi-field and multi-scale settings are discussed, as well as modelling formulations and constitutive modelling frameworks and novel experimental programmes. The conference also considered the need for reliable, high-quality analysis and design of concrete structures in regard to safety-critical structures, with a view to adopting these in codes of practice or recommendations. The book is of special interest to researchers in computational mechanics, and industry experts in complex nonlinear simulations of concrete structures.
Focusing on fundamental principles, Hydro-Environmental Analysis: Freshwater Environments presents in-depth information about freshwater environments and how they are influenced by regulation. It provides a holistic approach, exploring the factors that impact water quality and quantity, and the regulations, policy and management methods that are necessary to maintain this vital resource. It offers a historical viewpoint as well as an overview and foundation of the physical, chemical, and biological characteristics affecting the management of freshwater environments. The book concentrates on broad and general concepts, providing an interdisciplinary foundation. The author covers the methods of measurement and classification; chemical, physical, and biological characteristics; indicators of ecological health; and management and restoration. He also considers common indicators of environmental health; characteristics and operations of regulatory control structures; applicable laws and regulations; and restoration methods. The text delves into rivers and streams in the first half and lakes and reservoirs in the second half. Each section centers on the characteristics of those systems and methods of classification, and then moves on to discuss the physical, chemical, and biological characteristics of each. In the section on lakes and reservoirs, it examines the characteristics and operations of regulatory structures, and presents the methods commonly used to assess the environmental health or integrity of these water bodies. It also introduces considerations for restoration, and presents two unique aquatic environments: wetlands and reservoir tailwaters. Written from an engineering perspective, the book is an ideal introduction to the aquatic and limnological sciences for students of environmental science, as well as students of environmental engineering. It also serves as a reference for engineers and scientists involved in the management, regulation, or restoration of freshwater environments.
This volume gathers the latest advances, innovations and applications in the field of crack control in concrete, as presented by leading international researchers and engineers at the International RILEM Conference on Early-age and Long-term Cracking in RC Structures (CRC 2021), held in Paris, France on April 9, 2021. It covers early-age and long-term imposed deformations in concrete, analytical formulations for calculating crack widths in concrete, numerical simulations of early-age and long-term restrained behaviour of concrete elements, experimental investigations on cracking, on-site monitoring of imposed deformations and cracking, crack control and repair, and sustainability of design and remediation. The conference demonstrated that a comprehensive approach to this problem requires the design of robust experimental techniques, the development of multiscale models and the evaluation of code-based and other analytical approaches relevant to crack control in concrete. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that will spur novel research directions and foster new multidisciplinary collaborations.