Download Free Privacy Preservation Of Genomic And Medical Data Book in PDF and EPUB Free Download. You can read online Privacy Preservation Of Genomic And Medical Data and write the review.

PRIVACY PRESERVATION of GENOMIC and MEDICAL DATA Discusses topics concerning the privacy preservation of genomic data in the digital era, including data security, data standards, and privacy laws so that researchers in biomedical informatics, computer privacy and ELSI can assess the latest advances in privacy-preserving techniques for the protection of human genomic data. Privacy Preservation of Genomic and Medical Data focuses on genomic data sources, analytical tools, and the importance of privacy preservation. Topics discussed include tensor flow and Bio-Weka, privacy laws, HIPAA, and other emerging technologies like Internet of Things, IoT-based cloud environments, cloud computing, edge computing, and blockchain technology for smart applications. The book starts with an introduction to genomes, genomics, genetics, transcriptomes, proteomes, and other basic concepts of modern molecular biology. DNA sequencing methodology, DNA-binding proteins, and other related terms concerning genomes and genetics, and the privacy issues are discussed in detail. The book also focuses on genomic data sources, analyzing tools, and the importance of privacy preservation. It concludes with future predictions for genomic and genomic privacy, emerging technologies, and applications. Audience Researchers in information technology, data mining, health informatics and health technologies, clinical informatics, bioinformatics, security and privacy in healthcare, as well as health policy developers in public and private health departments and public health.
PRIVACY PRESERVATION of GENOMIC and MEDICAL DATA Discusses topics concerning the privacy preservation of genomic data in the digital era, including data security, data standards, and privacy laws so that researchers in biomedical informatics, computer privacy and ELSI can assess the latest advances in privacy-preserving techniques for the protection of human genomic data. Privacy Preservation of Genomic and Medical Data focuses on genomic data sources, analytical tools, and the importance of privacy preservation. Topics discussed include tensor flow and Bio-Weka, privacy laws, HIPAA, and other emerging technologies like Internet of Things, IoT-based cloud environments, cloud computing, edge computing, and blockchain technology for smart applications. The book starts with an introduction to genomes, genomics, genetics, transcriptomes, proteomes, and other basic concepts of modern molecular biology. DNA sequencing methodology, DNA-binding proteins, and other related terms concerning genomes and genetics, and the privacy issues are discussed in detail. The book also focuses on genomic data sources, analyzing tools, and the importance of privacy preservation. It concludes with future predictions for genomic and genomic privacy, emerging technologies, and applications. Audience Researchers in information technology, data mining, health informatics and health technologies, clinical informatics, bioinformatics, security and privacy in healthcare, as well as health policy developers in public and private health departments and public health.
In the modern business landscape, the intersection of technology and operations management is driving efficiency and innovation. As organizations continue to rely on advanced technologies, such as artificial intelligence, data analytics, and automation, they are transforming their operational strategies to enhance productivity, streamline processes, and deliver valuable products. Aligning technological advancements with operational goals allows companies to achieve a competitive edge, improve customer satisfaction, and unlock new growth opportunities. Businesses must continue to explore this convergence to adapt their operations successfully and invest in necessary skills to connect technology with business processes. Convergence of Technology and Operations Management in Modern Businesses explores the intersection of technology and operations management in the modern business environment. It covers technological advancements for revolutionized operations and supply chain management for increased efficiency and competitiveness. This book covers topics such as smart banking, blockchain, and human capital, and is a useful resource for financial professionals, bankers, business owners, data scientists, computer engineers, academicians, scientists, and researchers.
Today, in this smart era, data analytics and artificial intelligence (AI) play an important role in predictive maintenance (PdM) within the manufacturing industry. This innovative approach aims to optimize maintenance strategies by predicting when equipment or machinery is likely to fail so that maintenance can be performed just in time to prevent costly breakdowns. This book contains up-to-date information on predictive maintenance and the latest advancements, trends, and tools required to reduce costs and save time for manufacturers and industries. Data Analytics and Artificial Intelligence for Predictive Maintenance in Smart Manufacturing provides an extensive and in-depth exploration of the intersection of data analytics, artificial intelligence, and predictive maintenance in the manufacturing industry and covers fundamental concepts, advanced techniques, case studies, and practical applications. Using a multidisciplinary approach, this book recognizes that predictive maintenance in manufacturing requires collaboration among engineers, data scientists, and business professionals and includes case studies from various manufacturing sectors showcasing successful applications of predictive maintenance. The real-world examples explain the useful benefits and ROI achieved by organizations. The emphasis is on scalability, making it suitable for both small and large manufacturing operations, and readers will learn how to adapt predictive maintenance strategies to different scales and industries. This book presents resources and references to keep readers updated on the latest advancements, tools, and trends, ensuring continuous learning. Serving as a reference guide, this book focuses on the latest advancements, trends, and tools relevant to predictive maintenance and can also serve as an educational resource for students studying manufacturing, data science, or related fields.
The book uniquely explores the fundamentals of blockchain and digital twin and their uses in smart hospitals. Artificial Intelligence-Enabled Blockchain Technology and Digital Twin for Smart Hospitals provides fundamental information on blockchain and digital twin technology as effective solutions in smart hospitals. Digital twin technology enables the creation of real-time virtual replicas of hospital assets and patients, enhancing predictive maintenance, operational efficiency, and patient care. Blockchain technology provides a secure and transparent platform for managing and sharing sensitive data, such as medical records and pharmaceutical supply chains. By combining these technologies, smart hospitals can ensure data security, interoperability, and streamlined operations while providing patient-centered care. The book also explores the impact of collected medical data from real-time systems in smart hospitals, and by making it accessible to all doctors via a smartphone or mobile device for fast decisions. Inevitable challenges such as privacy concerns and integration costs must, of course, be addressed. However, the potential benefits in terms of improved healthcare quality, reduced costs, and global health initiatives makes the integration of these technologies a compelling avenue for the future of healthcare. Some of the topics that readers will find in this book include: Wireless Medical Sensor Networks in Smart Hospitals ● DNA Computing in Cryptography ● Enhancing Diabetic Retinopathy and Glaucoma Diagnosis through Efficient Retinal Vessel Segmentation and Disease Classification ● Machine Learning-Enabled Digital Twins for Diagnostic And Therapeutic Purposes ● Blockchain as the Backbone of a Connected Ecosystem of Smart Hospitals ● Blockchain for Edge Association in Digital Twin Empowered 6G Networks ● Blockchain for Security and Privacy in Smart Healthcare ● Blockchain-Enabled Internet of Things (IoTs) Platforms for IoT-Based Healthcare and Biomedical Sector ● Electronic Health Records in a Blockchain ● PSO-Based Hybrid Cardiovascular Disease Prediction for Using Artificial Flora Algorithm ● AI and Transfer Learning Based Framework for Efficient Classification And Detection Of Lyme Disease ● Framework for Gender Detection Using Facial Countenances ● Smartphone-Based Sensors for Biomedical Applications ● Blockchain for Improving Security and Privacy in the Smart Sensor Network ● Sensors and Digital Twin Application in Healthcare Facilities Management ● Integration of Internet of Medical Things (IoMT) with Blockchain Technology to Improve Security and Privacy ● Machine Learning-Driven Digital Twins for Precise Brain Tumor and Breast Cancer Assessment ● Ethical and Technological Convergence: AI and Blockchain in Halal Healthcare ● Digital Twin Application in Healthcare Facilities Management ● Cloud-based Digital Twinning for Structural Health Monitoring Using Deep Learning. Audience The book will be read by hospital and healthcare providers, administrators, policymakers, scientists and engineers in artificial intelligence, information technology, electronics engineering, and related disciplines.
This handbook covers Electronic Medical Record (EMR) systems, which enable the storage, management, and sharing of massive amounts of demographic, diagnosis, medication, and genomic information. It presents privacy-preserving methods for medical data, ranging from laboratory test results to doctors’ comments. The reuse of EMR data can greatly benefit medical science and practice, but must be performed in a privacy-preserving way according to data sharing policies and regulations. Written by world-renowned leaders in this field, each chapter offers a survey of a research direction or a solution to problems in established and emerging research areas. The authors explore scenarios and techniques for facilitating the anonymization of different types of medical data, as well as various data mining tasks. Other chapters present methods for emerging data privacy applications and medical text de-identification, including detailed surveys of deployed systems. A part of the book is devoted to legislative and policy issues, reporting on the US and EU privacy legislation and the cost of privacy breaches in the healthcare domain. This reference is intended for professionals, researchers and advanced-level students interested in safeguarding medical data.
This book constitutes the refereed proceedings of the First International Conference on Future Internet Technologies and Trends, ICFITT 2017, held in Surat, India, August 31 – September 2, 2017. The 28 full papers were selected from 66 submissions and present next generation requirements for extremely high speed data communications, IoT, security, broadband technology, cognitive radio, vehicular technology, gigabit wireless networks, data management and big data
Anonymization of Electronic Medical Records to Support Clinical Analysis closely examines the privacy threats that may arise from medical data sharing, and surveys the state-of-the-art methods developed to safeguard data against these threats. To motivate the need for computational methods, the book first explores the main challenges facing the privacy-protection of medical data using the existing policies, practices and regulations. Then, it takes an in-depth look at the popular computational privacy-preserving methods that have been developed for demographic, clinical and genomic data sharing, and closely analyzes the privacy principles behind these methods, as well as the optimization and algorithmic strategies that they employ. Finally, through a series of in-depth case studies that highlight data from the US Census as well as the Vanderbilt University Medical Center, the book outlines a new, innovative class of privacy-preserving methods designed to ensure the integrity of transferred medical data for subsequent analysis, such as discovering or validating associations between clinical and genomic information. Anonymization of Electronic Medical Records to Support Clinical Analysis is intended for professionals as a reference guide for safeguarding the privacy and data integrity of sensitive medical records. Academics and other research scientists will also find the book invaluable.
In the relentless battle against escalating cyber threats, data security faces a critical challenge – the need for innovative solutions to fortify encryption and decryption processes. The increasing frequency and complexity of cyber-attacks demand a dynamic approach, and this is where the intersection of cryptography and machine learning emerges as a powerful ally. As hackers become more adept at exploiting vulnerabilities, the book stands as a beacon of insight, addressing the urgent need to leverage machine learning techniques in cryptography. Machine Learning and Cryptographic Solutions for Data Protection and Network Security unveil the intricate relationship between data security and machine learning and provide a roadmap for implementing these cutting-edge techniques in the field. The book equips specialists, academics, and students in cryptography, machine learning, and network security with the tools to enhance encryption and decryption procedures by offering theoretical frameworks and the latest empirical research findings. Its pages unfold a narrative of collaboration and cross-pollination of ideas, showcasing how machine learning can be harnessed to sift through vast datasets, identify network weak points, and predict future cyber threats.