Download Free Principles Of Structure Book in PDF and EPUB Free Download. You can read online Principles Of Structure and write the review.

Since its first publication in 1974, Principles of Structure has established itself at the forefront of introductory texts for students of architecture, building and project management seeking a basic understanding of the behavior and design of building structures. It provides a simple quantitative introduction to structural engineering, while also drawing connections to real buildings that are more complex. Retaining the style and format of earlier editions, this Fifth Edition brings the text and examples into alignment with international practice. It also features six new buildings from around the world, illustrating the principles described in the text. The book begins with a chapter explaining forces and their effects. Other chapters cover ties and struts, loadings, graphical statics, bracings, shears and moments, stresses, deflections, and beam design. There is also an appendix with a fuller explanation of fundamentals for readers unfamiliar with the basic concepts of geometry and statics. The book offers a unique format with right-hand pages containing text and left-hand pages containing complementary commentary including explanations and expansions of points made in the text and worked examples. This cross-referencing gives readers a range of perspectives and a deeper understanding of each topic. The simple mathematical approach and logical progression—along with the hints and suggestions, worked examples and problem sheets—give beginners straightforward access to elementary structural engineering.
Provides the ideal introduction to the quantitative language of structures, and gives an insight into the relative importance of its different variables. The new edition includes references to ultimate strength design methods, more loading conditions, and illustrated examples.
Both architectural and civil engineering students need an intrinsic grasp of structures. This book provides a highly-visual approach to structural concepts and introduces the basic principles.
Timber, steel, and concrete are common engineering materials used in structural design. Material choice depends upon the type of structure, availability of material, and the preference of the designer. The design practices the code requirements of each material are very different. In this updated edition, the elemental designs of individual components of each material are presented, together with theory of structures essential for the design. Numerous examples of complete structural designs have been included. A comprehensive database comprising materials properties, section properties, specifications, and design aids, has been included to make this essential reading.
This enlightening textbook for undergraduates on civil engineering degree courses explains structural design from its mechanical principles, showing the speed and simplicity of effective design from first principles. This text presents good approximate solutions to complex design problems, such as "Wembley-Arch" type structures, the design of thin-walled structures, and long-span box girder bridges. Other more code-based textbooks concentrate on relatively simple member design, and avoid some of the most interesting design problems because code compliant solutions are complex. Yet these problems can be addressed by relatively manageable techniques. The methods outlined here enable quick, early stage, "ball-park" design solutions to be considered, and are also useful for checking finite element analysis solutions to complex problems. The conventions used in the book are in accordance with the Eurocodes, especially where they provide convenient solutions that can be easily understood by students. Many of the topics, such as composite beam design, are straight applications of Eurocodes, but with the underlying theory fully explained. The techniques are illustrated through a series of worked examples which develop in complexity, with the more advanced questions forming extended exam type questions. A comprehensive range of fully worked tutorial questions are provided at the end of each section for students to practice in preparation for closed book exams.
Many important advances in designing modern structures have occurred over the last several years. Structural engineers need an authoritative source of information that thoroughly and concisely covers the foundational principles of the field. Comprising chapters selected from the second edition of the best-selling Handbook of Structural Engineering, Principles of Structural Design provides a tightly focused, concise, and valuable guide to the theoretical, practical, and computational aspects of structural design. This book systematically explores the fundamental concepts underlying structural design for each major type of structural material. Expert contributors authoritatively discuss steel structures, steel frame design using advanced analysis, cold-formed steel structures, reinforced concrete structures, prestressed concrete, and masonry, timber, and aluminum structures. For each construction material, the chapter explores the material properties, design considerations, and structural principles affecting overall design. Reflecting recent advances, the book includes two chapters devoted to reliability-based structural design and structure configuration based on wind engineering. Computational methods and simulation techniques illustrate the concepts of reliability-based design, while examples of real bridges highlight the application of wind engineering principles and methods. Principles of Structural Design couples fundamental concepts with advanced practices. It is an ideal introduction for newcomers to the field as well as a perfect review and quick-reference guide for seasoned engineers.
New textbooks at all levels of chemistry appear with great regularity. Some fields like basic biochemistry, organic reaction mechanisms, and chemical ther modynamics are well represented by many excellent texts, and new or revised editions are published sufficiently often to keep up with progress in research. However, some areas of chemistry, especially many of those taught at the grad uate level, suffer from a real lack of up-to-date textbooks. The most serious needs occur in fields that are rapidly changing. Textbooks in these subjects usually have to be written by scientists actually involved in the research which is advancing the field. It is not often easy to persuade such individuals to set time aside to help spread the knowledge they have accumulated. Our goal, in this series, is to pinpoint areas of chemistry where recent progress has outpaced what is covered in any available textbooks, and then seek out and persuade experts in these fields to produce relatively concise but instructive introductions to their fields. These should serve the needs of one semester or one quarter graduate courses in chemistry and biochemistry. In some cases the availability of texts in active research areas should help stimulate the creation of new courses. CHARLES R. CANTOR New York Preface This monograph is based on a review on polynucleotide structures written for a book series in 1976.
This book has been replaced by Principles and Practice of Structural Equation Modeling, Fifth Edition, ISBN 978-1-4625-5191-0.
Based on the latest version of designing codes both for buildings and bridges (GB50010-2010 and JTG D62-2004), this book starts from steel and concrete materials, whose properties are very important to the mechanical behavior of concrete structural members. Step by step, analysis of reinforced and prestressed concrete members under basic loading types (tension, compression, flexure, shearing and torsion) and environmental actions are introduced. The characteristic of the book that distinguishes it from other textbooks on concrete structures is that more emphasis has been laid on the basic theories of reinforced concrete and the application of the basic theories in design of new structures and analysis of existing structures. Examples and problems in each chapter are carefully designed to cover every important knowledge point. As a basic course for undergraduates majoring in civil engineering, this course is different from either the previously learnt mechanics courses or the design courses to be learnt. Compared with mechanics courses, the basic theories of reinforced concrete structures cannot be solely derived by theoretical analysis. And compared with design courses, this course emphasizes the introduction of basic theories rather than simply being a translation of design specifications. The book will focus on both the theoretical derivations and the engineering practices.