Download Free Principles Of Space Time Adaptive Processing Book in PDF and EPUB Free Download. You can read online Principles Of Space Time Adaptive Processing and write the review.

This is a systematic introduction to airborne MTI radar design in use in the fields of earth observation, surveillance and reconnaissance, with particular regard to the suppression of clutter returns. It explores signal processing techniques, jamming and system applications, including sonar.
This book presents a systematic introduction to airborne MTI (moving target indication) system design for use in the fields of earth observation, surveillance and reconnaissance, with particular regard to the suppression of clutter returns. New developments in the field and special aspects of airborne MTI radar are also covered.
This authoritative, leading-edge resource gives you a comprehensive overview of sample rate conversion (SRC) and its applications in software configurable radios. The book helps you understand the limits of feasible systems for sample rate conversion, as well as the limits of interpolation. You get sound advice on selecting the appropriate types of SRC for specific applications, and assistance in handling the trade-off between hardware complexity and the clock rate of a system. From an introduction to software radio and a refresher on the fundamentals of sampling and sample rate conversion, to discussions on block signal processing and well-known and novel structures for sample rate conversion, the book offers you practical guidance that enables you to quickly find solutions for your challenging projects in the field. This first-of-its-kind reference concludes with a list of questions that - when answered - helps to design a system for sample rate conversion. Over 890 equations and 90 illustrations support key topics throughout the book.
This text discusses various applications of space-time adaptive processing, including applications in OTH-radar, ground target tracking, STAP in real world clutter environments, jammer cancellation, superresolution, active sonar, seismics and communications. It is divided into two parts: the first dealing with the classical adaptive suppression of airborne and spacebased radar clutter, and the second comprising of miscellaneous applications in other fields such as communications, underwater sound and seismics.
The First Comprehensive Guide to the Principles, Design Methods, and Applications of Space Based Radar Turn to Space Based Radar for authoritative information on the latest developments in Space Based Radar (SBR), covering fundamental principles, cutting-edge design methods, and several new applications. This SBR guide focuses on clutter and target data generation from an SBR platform, and on Space Time Adaptive Processing (STAP) to enhance the target detection and the clutter cancellation capabilities of the radar system. Designed to save you hours of research time and effort, this one-stop resource explores the full range of SBR topics, including SBR footprint and range foldover phenomenon...Doppler shift that accounts for Earth's rotation...terrain modeling...STAP algorithms for enhanced target detection...and much more. Packed with over 250 full-color illustrations, Space Based Radar features: Complete coverage of the technical issues associated with SBR and their impact on system performance A CD containing all of the book's illustrations, equations, and samples; plus more than 250 PowerPoint slides for self-study or lectures Inside This Pioneering SBR Sourcebook • Introducing Space Based Radar • The Conics • Two Body Orbital Motion and Kepler's Laws • SBR Kinematics • Space Time Adaptive Processing for Space Based Radar • Performance Analysis Using Cramer-Rao Bounds • Waveform Diversity
Principles of Modern Radar: Basic Principles is a comprehensive text for courses in radar systems and technology, a professional training textbook for formal in-house courses and for new hires; a reference for ongoing study following a radar short course and a self-study and professional reference book.
Teaches students about classical and nonclassical adaptive systems within one pair of covers Helps tutors with time-saving course plans, ready-made practical assignments and examination guidance The recently developed "practical sub-space adaptive filter" allows the reader to combine any set of classical and/or non-classical adaptive systems to form a powerful technology for solving complex nonlinear problems
Describes the ideas and associated mathematical concepts behind signal to noise ratio and target detectability.
Advances in DSP (digital signal processing) have radically altered the design and usage of radar systems -- making it essential for both working engineers as well as students to master DSP techniques. This text, which evolved from the author's own teaching, offers a rigorous, in-depth introduction to today's complex radar DSP technologies. Contents: Introduction to Radar Systems * Signal Models * Sampling and Quantization of Pulsed Radar Signals * Radar Waveforms * Pulse Compression Waveforms * Doppler Processing * Detection Fundamentals * Constant False Alarm Rate (CFAR) Detection * Introduction to Synthetic Aperture Imaging
Learn about the most recent theoretical and practical advances in radar signal processing using tools and techniques from compressive sensing. Providing a broad perspective that fully demonstrates the impact of these tools, the accessible and tutorial-like chapters cover topics such as clutter rejection, CFAR detection, adaptive beamforming, random arrays for radar, space-time adaptive processing, and MIMO radar. Each chapter includes coverage of theoretical principles, a detailed review of current knowledge, and discussion of key applications, and also highlights the potential benefits of using compressed sensing algorithms. A unified notation and numerous cross-references between chapters make it easy to explore different topics side by side. Written by leading experts from both academia and industry, this is the ideal text for researchers, graduate students and industry professionals working in signal processing and radar.