Download Free Principles Of Quantum General Relativity Book in PDF and EPUB Free Download. You can read online Principles Of Quantum General Relativity and write the review.

This book provides a complete treatise of the canonical quantisation of general relativity and the loop quantum gravity theory. Mathematical concepts are provided, so it can be read by graduate students with a basic knowledge of quantum field theory or general relativity.
This monograph explains and analyzes the principles of a quantum-geometric framework for the unification of general relativity and quantum theory. By taking advantage of recent advances in areas like fibre and superfibre bundle theory, Krein spaces, gauge fields and groups, coherent states, etc., these principles can be consistently incorporated into a framework that can justifiably be said to provide the foundations for a quantum extrapolation of general relativity. This volume aims to present this approach in a way which places as much emphasis on fundamental physical ideas as on their precise mathematical implementation. References are also made to the ideas of Einstein, Bohr, Born, Dirac, Heisenberg and others, in order to set the work presented here in an appropriate historical context.
This monograph presents a review and analysis of the main mathematical, physical and epistomological difficulties encountered at the foundational level by all the conventional formulations of relativistic quantum theories, ranging from relativistic quantum mechanics and quantum field theory in Minkowski space, to the various canonical and covariant approaches to quantum gravity. It is, however, primarily devoted to the systematic presentation of a quantum framework meant to deal effectively with these difficulties by reconsidering the foundations of these subjects, analyzing their epistemic nature, and then developing mathematical tools which are specifically designed for the elimination of all the basic inconsistencies. A carefully documented historical survey is included, and additional extensive notes containing quotations from original sources are incorporated at the end of each chapter, so that the reader will be brought up-to-date with the very latest developments in quantum field theory in curved spacetime, quantum gravity and quantum cosmology. The survey further provides a backdrop against which the new foundational and mathematical ideas of the present approach to these subjects can be brought out in sharper relief.
This book focuses on a critical discussion of the status and prospects of current approaches in quantum mechanics and quantum field theory, in particular concerning gravity. It contains a carefully selected cross-section of lectures and discussions at the seventh conference “Progress and Visions in Quantum Theory in View of Gravity” which took place in fall 2018 at the Max Planck Institute for Mathematics in the Sciences in Leipzig. In contrast to usual proceeding volumes, instead of reporting on the most recent technical results, contributors were asked to discuss visions and new ideas in foundational physics, in particular concerning foundations of quantum field theory. A special focus has been put on the question of which physical principles of quantum (field) theory can be considered fundamental in view of gravity. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.
In part one of Effective Action in Quantum Gravity, the book describes the principles of quantum field theory and the significance of and theory behind effective action. Part two deals with quantum field theory in curved space-time and the effective action. These two parts provide the tools for understanding the rest of the book, which is devoted to selected problems of quantum gravity where the effective action plays a major role. The book assumes only a basic understanding of quantum field theory and general relativity and will be of interest to postgraduate students and researchers in theoretical high-energy physics and gravitational theory.
This book is a treatise on time and on background independence in physics. It first considers how time is conceived of in each accepted paradigm of physics: Newtonian, special relativity, quantum mechanics (QM) and general relativity (GR). Substantial differences are moreover uncovered between what is meant by time in QM and in GR. These differences jointly source the Problem of Time: Nine interlinked facets which arise upon attempting concurrent treatment of the QM and GR paradigms, as is required in particular for a background independent theory of quantum gravity. A sizeable proportion of current quantum gravity programs - e.g. geometrodynamical and loop quantum gravity approaches to quantum GR, quantum cosmology, supergravity and M-theory - are background independent in this sense. This book's foundational topic is thus furthermore of practical relevance in the ongoing development of quantum gravity programs. This book shows moreover that eight of the nine facets of the Problem of Time already occur upon entertaining background independence in classical (rather than quantum) physics. By this development, and interpreting shape theory as modelling background independence, this book further establishes background independence as a field of study. Background independent mechanics, as well as minisuperspace (spatially homogeneous) models of GR and perturbations thereabout are used to illustrate these points. As hitherto formulated, the different facets of the Problem of Time greatly interfere with each others' attempted resolutions. This book explains how, none the less, a local resolution of the Problem of Time can be arrived at after various reconceptualizations of the facets and reformulations of their mathematical implementation. Self-contained appendices on mathematical methods for basic and foundational quantum gravity are included. Finally, this book outlines how supergravity is refreshingly different from GR as a realization of background independence, and what background independence entails at the topological level and beyond.
I am very happy to accept the translators' invitation to write a few lines of introduction to this book. Of course, there is little need to explain the author. Pauli's first famous work, his article on the theory of relativity in the Encyklopädie der Mathematischen Wissenschaften was written at the age of twenty. He afterwards took part in the development of atomic physics from the still essentially classical picture of Bohr's early work to the true quantum mechanics. Thereafter, some of his work concerned the treatment of problems in the framework of the new theory, especially his paper on the hydrogen atom following the matrix method without recourse to Schrodinger's analytic form of the theory. His greatest achievement, the exclusion principle, generally known today under his own name as the Pauli principle, that governs the quantum theory of all problems including more than one electron, preceded the basic work of Heisenberg and Schrodinger, and brought him the Nobel prize. It includes the mathematical treatment of the spin by means of the now so well known Pauli matrices. In 1929, in a paper with Heisenberg, he laid the foundation of quantum electrodynamics and, in doing so, to the whole theory of quantized wave fields which was to become the via regia of access to elementary particle physics, since here for the first time processes of generation and annihilation of particles could be described for the case of the photons.
In this book, Robert Wald provides a coherent, pedagogical introduction to the formulation of quantum field theory in curved spacetime. He begins with a treatment of the ordinary one-dimensional quantum harmonic oscillator, progresses through the construction of quantum field theory in flat spacetime to possible constructions of quantum field theory in curved spacetime, and, ultimately, to an algebraic formulation of the theory. In his presentation, Wald disentangles essential features of the theory from inessential ones (such as a particle interpretation) and clarifies relationships between various approaches to the formulation of the theory. He also provides a comprehensive, up-to-date account of the Unruh effect, the Hawking effect, and some of its ramifications. In particular, the subject of black hole thermodynamics, which remains an active area of research, is treated in depth. This book will be accessible to students and researchers who have had introductory courses in general relativity and quantum field theory, and will be of interest to scientists in general relativity and related fields.
In discussing the question of whether General Relativity Theory really needs to be quantized, a simply negative answer cannot be accepted, of course. Such an answer is not satisfying because, first, Einstein's gravitational equations connect gravity and non-gravitational matter and because, second, it can be taken for granted that non-gravitational matter has an atomic or quantum structure such that its energy-momentum tensor standing on the right-hand side of Einstein's equations is formed out of quantum operators. These two facts make it impossible to read the left-hand side of Einstein's equations as an ordinary classical function. This does not necessarily mean, however, that we must draw the conclusion that General Relativity Theory, similar to electrodynamics, could or should be quantized in a rigorous manner and that this quantization has similar consequences to quantum electrodynamics. In other words, when for reasons of consistency quantization is tried, then one has to ask whether and where the quantization procedure has a physical meaning, i.e., whether there exist measurable effects of quantum gravity. IQ accordance with these questions, we are mainly dealing with the discus sion of the principles of quantized General Relativity Theory and with the estimation of quantum effects including the question of their measurability. This analysis proves that it is impossible to distinguish between classical and quantum General Relativity Theory for the extreme case of Planck's orders of magnitude. In other words, there does not exist a physically meaningful rigorous quantization conception for Einstein's theory.