Download Free Principles Of Protein X Ray Crystallography Book in PDF and EPUB Free Download. You can read online Principles Of Protein X Ray Crystallography and write the review.

New textbooks at all levels of chemistry appear with great regularity. Some fields such as basic biochemistry, organic reaction mechanisms, and chemical thermodynamics are well represented by many excellent texts, and new or revised editions are published sufficiently often to keep up with progress in research. However, some areas of chemistry, especially many of those taught at the graduate level, suffer from a real lack of up to-date textbooks. The most serious needs occur in fields that are rapidly changing. Textbooks in these subjects usually have to be written by scientists actually involved in the research that is advancing the field. It is not often easy to persuade such individuals to set time aside to help spread the knowledge they have accumulated. Our goal, in this series, is to pinpoint areas of chemistry where recent progress has outpaced what is covered in any available textbooks, and then seek out and persuade experts in these fields to produce relatively concise but instructive intro ductions to their fields. These should serve the needs of one-semester or one-quarter graduate courses in chemistry and biochemistry. In some cases, the availability of texts in active research areas should help stimulate the creation of new courses. Charles R. Cantor v Preface to the Second Edition Since the publication of the previous edition in 1994, X-ray crystallography of proteins has advanced by improvements in existing techniques and by addition of new techniques.
The advances in and applications of x-ray and neutron crystallography form the essence of this new edition of this classic textbook, while maintaining the overall plan of the book that has been well received in the academic community since the first edition in 1977. X-ray crystallography is a universal tool for studying molecular structure, and the complementary nature of neutron diffraction crystallography permits the location of atomic species in crystals which are not easily revealed by X-ray techniques alone, such as hydrogen atoms or other light atoms in the presence of heavier atoms. Thus, a chapter discussing the practice of neutron diffraction techniques, with examples, broadens the scope of the text in a highly desirable way. As with previous editions, the book contains problems to illustrate the work of each chapter, and detailed solutions are provided. Mathematical procedures related to the material of the main body of the book are not discussed in detail, but are quoted where needed with references to standard mathematical texts. To address the computational aspect of crystallography, the suite of computer programs from the fourth edition has been revised and expanded. The programs enable the reader to participate fully in many of the aspects of x-ray crystallography discussed in the book. In particular, the program system XRAY* is interactive, and enables the reader to follow through, at the monitor screen, the computational techniques involved in single-crystal structure determination, albeit in two dimensions, with the data sets provided. Exercises for students can be found in the book, and solutions are available to instructors.
Written by one of the most significant contributors to the progress of protein crystallography, this practical guide contains case studies, a troubleshooting section and pointers on data interpretation. It covers the theory, practice and latest achievements in x-ray crystallography, such that any researcher in structural biology will benefit from this extremely clearly written book. Part A covers the theoretical basis and such experimental techniques as principles of x-ray diffraction, solutions for the phase problem and time-resolved x-ray crystallography. Part B includes case studies for different kinds of x-ray crystal structure determination, such as the MIRAS and MAD techniques, molecular replacement, and the difference Fourier technique.
"With an understanding of three-dimensional structure being so central to the understanding of molecular function, Principles of X-ray Crystallography is the perfect guide for anyone needing to gain a working insight into X-ray crystallography." --Book Jacket.
Crystallography Made Crystal Clear is designed to meet the need for an X-ray analysis that is between brief textbook sections and complete treatments. The book provides non-crystallographers with an intellectually satisfying explanation of the principles of how protein models are gleaned from X-ray analysis. The understanding of these concepts will foster wise use of the models, including the recognition of the strengths and weaknesses of pictures or computer graphics. Since proteins comprise the majority of the mass of macromolecules in cells and carry out biologically important tasks, the book will be of interest to biologists. Provides accessible descriptions of principles of x-ray crystallography, built on simple foundations for anyone with a basic science backgroundLeads the reader through clear, thorough, unintimidating explanations of the mathematics behind crystallographyExplains how to read crystallography papers in research journalsIf you use computer-generated models of proteins or nucleic acids for:Studying molecular interactionsDesigning ligands, inhibitors, or drugsEngineering new protein functionsInterpreting chemical, kinetic, thermodynamic, or spectroscopic dataStudying protein foldingTeaching macromolecule structure,and if you want to read new structure papers intelligently; become a wiser user of macromolecular models; and want to introduce undergraduates to the important subject of x-ray crystallography, then this book is for you.
The rational, structure-based approach has become standard in present-day drug design. As a consequence, the availability of high-resolution structures of target proteins is more often than not the basis for an entire drug development program. Protein structures suited for rational drug design are almost exclusively derived from crystallographic studies, and drug developers are relying heavily on the power of this method. Here, researchers from leading pharmaceutical companies present valuable first-hand information, much of it published for the first time. They discuss strategies to derive high-resolution structures for such important target protein classes as kinases or proteases, as well as selected examples of successful protein crystallographic studies. A special section on recent methodological developments, such as for high-throughput crystallography and microcrystallization, is also included. A valuable companion for crystallographers involved in protein structure determination as well as drug developers pursuing the structure-based approach for use in their daily work.
A textbook for the student beginning a serious study of X-ray crystallography.
The proteome remains a mysterious realm. Researchers have determined the structures of only a small fraction of the proteins encoded by the human genome. Crystallography continues to be the primary method used to determine the structures of the remaining unknown proteins. This imaging technique uses the diffraction of X-rays to determine a protein’s three-dimensional molecular structure. Drawing on years of research and teaching experience, Eaton E. Lattman and Patrick J. Loll use clear examples and abundant illustrations to provide a concise and accessible primer on protein crystallography. Discussing the basics of diffraction, the behavior of two- and three-dimensional crystals, phase determination (including MIR and MAD phasing and molecular replacement), the Patterson function, and refinement, Lattman and Loll provide a complete overview of this important technique, illuminated by physical insights. The crisp writing style and simple illustrations will provide beginner crystallographers with a guide to the process of unraveling protein structure.
This volume provides methods for modern macromolecular crystallography, including all steps leading to crystal structure determination and analysis. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Protein Crystallography aims to ensure successful results in the further study of this vital field.
Synthesizing over thirty years of advances into a comprehensive textbook, Biomolecular Crystallography describes the fundamentals, practices, and applications of protein crystallography. Illustrated in full-color by the author, the text describes mathematical and physical concepts in accessible and accurate language. Biomolecular Crystallography will be a valuable resource for advanced undergraduate and graduate students and practitioners in structural biology, crystallography, and structural bioinformatics.