Download Free Principles Of Programming With Fortran 90 And C Book in PDF and EPUB Free Download. You can read online Principles Of Programming With Fortran 90 And C and write the review.

Strategien zur Lösung wissenschaftlicher Probleme mittels Fortran 90 und C++ sind Thema dieses Buches. Behandelt werden Fragestellungen, denen sich Naturwissenschaftler im Alltag häufig gegenübersehen, wie Simulationen, Graphik, Datenanalyse und die Manipulation von Datenstrukturen. Den Autoren kommt es nicht darauf an, zu zeigen, wie man ein Problem codiert - sie zielen eher auf die Vermittlung allgemeingültiger Prinzipien ab. Mit zahlreichen Beispielen. (8/98)
Learn how to write technical applications in a modern object-oriented approach, using Fortran 90 or 95. This book will teach you how to stop focusing on the traditional procedural abilities of Fortran and to employ the principles of object-oriented programming to produce clear, highly efficient executable codes. In addition to covering the OOP methodologies the book also covers the basic foundation of the language and good programming skills. The author highlights common themes by using comparisons with Matlab and C++ and uses numerous cross-referenced examples to convey all concepts quickly and clearly. Complete code for the examples is included on the book's web site.
The introduction of the Fortran 90 standard is the first significant change in the Fortran language in over 20 years. this book is designed for anyone wanting to learn Fortran for the first time or or a programmer who needs to upgrade from Fortran 77 to Fortran 90. Employing a practical, problem-based approach this book provides a comprehensive introduction to the language. More experienced programmers will find it a useful update to the new standard and will benefit from the emphasis on science and engineering applications.
Fortran is one of the oldest high-level languages and remains the premier language for writing code for science and engineering applications. This book is for anyone who uses Fortran, from the novice learner to the advanced expert. It describes best practices for programmers, scientists, engineers, computer scientists and researchers who want to apply good style and incorporate rigorous usage in their own Fortran code or to establish guidelines for a team project. The presentation concentrates primarily on the characteristics of Fortran 2003, while also describing methods in Fortran 90/95 and valuable new features in Fortran 2008. The authors draw on more than a half century of experience writing production Fortran code to present clear succinct guidelines on formatting, naming, documenting, programming and packaging conventions and various programming paradigms such as parallel processing (including OpenMP, MPI and coarrays), OOP, generic programming and C language interoperability.
This book offers a venue for rapidly learning the language of C++ by concisely revealing its grammar, syntax and main features, and by explaining the key ideas behind object oriented programming (OOP) with emphasis on scientific computing. The book reviews elemental concepts of computers and computing, describes the primary features of C++, illustrates the use of pointers and user-defined functions, analyzes the construction of classes, and discusses graphics programming based on VOGLE and OpenGL. In short, the book is a basic, concise introduction to C++ programming for everyone from students to scientists and engineers seeking a quick grasp of key topics.
Most Perl programmers were originally trained as C and Unix programmers, so the Perl programs that they write bear a strong resemblance to C programs. However, Perl incorporates many features that have their roots in other languages such as Lisp. These advanced features are not well understood and are rarely used by most Perl programmers, but they are very powerful. They can automate tasks in everyday programming that are difficult to solve in any other way. One of the most powerful of these techniques is writing functions that manufacture or modify other functions. For example, instead of writing ten similar functions, a programmer can write a general pattern or framework that can then create the functions as needed according to the pattern. For several years Mark Jason Dominus has worked to apply functional programming techniques to Perl. Now Mark brings these flexible programming methods that he has successfully taught in numerous tutorials and training sessions to a wider audience.* Introduces powerful programming methodsnew to most Perl programmersthat were previously the domain of computer scientists* Gradually builds up confidence by describing techniques of progressive sophistication* Shows how to improve everyday programs and includes numerous engaging code examples to illustrate the methods
This easy-to-read textbook/reference presents an essential guide to object-oriented C++ programming for scientific computing. With a practical focus on learning by example, the theory is supported by numerous exercises. Features: provides a specific focus on the application of C++ to scientific computing, including parallel computing using MPI; stresses the importance of a clear programming style to minimize the introduction of errors into code; presents a practical introduction to procedural programming in C++, covering variables, flow of control, input and output, pointers, functions, and reference variables; exhibits the efficacy of classes, highlighting the main features of object-orientation; examines more advanced C++ features, such as templates and exceptions; supplies useful tips and examples throughout the text, together with chapter-ending exercises, and code available to download from Springer.
A comprehensive introduction which will be essential to the complete beginner who wants to learn the fundamentals of programming using a modern, powerful and expressive language; as well as those wanting to update their programming skills by making the move from earlier versions of Fortran.
A variety of programming models relevant to scientists explained, with an emphasis on how programming constructs map to parts of the computer. What makes computer programs fast or slow? To answer this question, we have to get behind the abstractions of programming languages and look at how a computer really works. This book examines and explains a variety of scientific programming models (programming models relevant to scientists) with an emphasis on how programming constructs map to different parts of the computer's architecture. Two themes emerge: program speed and program modularity. Throughout this book, the premise is to "get under the hood," and the discussion is tied to specific programs. The book digs into linkers, compilers, operating systems, and computer architecture to understand how the different parts of the computer interact with programs. It begins with a review of C/C++ and explanations of how libraries, linkers, and Makefiles work. Programming models covered include Pthreads, OpenMP, MPI, TCP/IP, and CUDA.The emphasis on how computers work leads the reader into computer architecture and occasionally into the operating system kernel. The operating system studied is Linux, the preferred platform for scientific computing. Linux is also open source, which allows users to peer into its inner workings. A brief appendix provides a useful table of machines used to time programs. The book's website (https://github.com/divakarvi/bk-spca) has all the programs described in the book as well as a link to the html text.
This book offers a new approach to introductory scientific computing. It aims to make students comfortable using computers to do science, to provide them with the computational tools and knowledge they need throughout their college careers and into their professional careers, and to show how all the pieces can work together. Rubin Landau introduces the requisite mathematics and computer science in the course of realistic problems, from energy use to the building of skyscrapers to projectile motion with drag. He is attentive to how each discipline uses its own language to describe the same concepts and how computations are concrete instances of the abstract. Landau covers the basics of computation, numerical analysis, and programming from a computational science perspective. The first part of the printed book uses the problem-solving environment Maple as its context, with the same material covered on the accompanying CD as both Maple and Mathematica programs; the second part uses the compiled language Java, with equivalent materials in Fortran90 on the CD; and the final part presents an introduction to LaTeX replete with sample files. Providing the essentials of computing, with practical examples, A First Course in Scientific Computing adheres to the principle that science and engineering students learn computation best while sitting in front of a computer, book in hand, in trial-and-error mode. Not only is it an invaluable learning text and an essential reference for students of mathematics, engineering, physics, and other sciences, but it is also a consummate model for future textbooks in computational science and engineering courses. A broad spectrum of computing tools and examples that can be used throughout an academic career Practical computing aimed at solving realistic problems Both symbolic and numerical computations A multidisciplinary approach: science + math + computer science Maple and Java in the book itself; Mathematica, Fortran90, Maple and Java on the accompanying CD in an interactive workbook format