Download Free Principles Of Paleoclimatology Book in PDF and EPUB Free Download. You can read online Principles Of Paleoclimatology and write the review.

Using the geologic records of ocean and lake sediment, ice cores, corals, and other natural archives, Principles of Paleoclimatology describes the history of the Earth's climate--the ice age cycles, sea level changes, volcanic activity, changes in atmosphere and solar radiation--and the resulting, sometimes catastrophic, biotic responses.
This two-volume book provides a comprehensive, detailed understanding of paleoclimatology beginning by describing the “proxy data” from which quantitative climate parameters are reconstructed and finally by developing a comprehensive Earth system model able to simulate past climates of the Earth. It compiles contributions from specialists in each field who each have an in-depth knowledge of their particular area of expertise. The first volume is devoted to “Finding, dating and interpreting the evidence”. It describes the different geo-chronological technical methods used in paleoclimatology. Different fields of geosciences such as: stratigraphy, magnetism, dendrochronology, sedimentology, are drawn from and proxy reconstructions from ice sheets, terrestrial (speleothems, lakes, and vegetation) and oceanic data, are used to reconstruct the ancient climates of the Earth. The second volume, entitled “Investigation into ancient climates,” focuses on building comprehensive models of past climate evolution. The chapters are based on understanding the processes driving the evolution of each component of the Earth system (atmosphere, ocean, ice). This volume provides both an analytical understanding of each component using a hierarchy of models (from conceptual to very sophisticated 3D general circulation models) and a synthetic approach incorporating all of these components to explore the evolution of the Earth as a global system. As a whole this book provides the reader with a complete view of data reconstruction and modeling of the climate of the Earth from deep time to present day with even an excursion to include impacts on future climate.
Raymond S. Bradley provides his readers with a comprehensive and up-to-date review of all of the important methods used in paleoclimatic reconstruction, dating and paleoclimate modeling. Two comprehensive chapters on dating methods provide the foundation for all paleoclimatic studies and are followed by up-to-date coverage of ice core research, continental geological and biological records, pollen analysis, radiocarbon dating, tree rings and historical records. New methods using alkenones in marine sediments and coral studies are also described. Paleoclimatology, Second Edition, is an essential textbook for advanced undergraduate and postgraduate students studying climatology, paleoclimatology and paleooceanography worldwide, as well as a valuable reference for lecturers and researchers, appealing to archaeologists and scientists interested in environmental change.* Contains two up-to-date chapters on dating methods* Consists of the latest coverage of ice core research, marine sediment and coral studies, continental geological and biological records, pollen analysis, tree rings, and historical records* Describes the newest methods using alkenones in marine sediments and long continental pollen records* Addresses all important methods used in paleoclimatic reconstruction* Includes an extensive chapter on the use of models in paleoclimatology* Extensive and up-to-date bibliography* Illustrated with numerous comprehensive figure captions
Earth's climate has undergone dramatic changes over the geologic timescale. At one extreme, Earth has been glaciated from the poles to the equator for periods that may have lasted millions of years. At another, temperatures were once so warm that the Canadian Arctic was heavily forested and large dinosaurs lived on Antarctica. Paleoclimatology is the study of such changes and their causes. Studying Earth's long-term climate history gives scientists vital clues about anthropogenic global warming and how climate is affected by human endeavor. In this book, Michael Bender, an internationally recognized authority on paleoclimate, provides a concise, comprehensive, and sophisticated introduction to the subject. After briefly describing the major periods in Earth history to provide geologic context, he discusses controls on climate and how the record of past climate is determined. The heart of the book then proceeds chronologically, introducing the history of climate changes over millions of years--its patterns and major transitions, and why average global temperature has varied so much. The book ends with a discussion of the Holocene (the past 10,000 years) and by putting manmade climate change in the context of paleoclimate. The most up-to-date overview on the subject, Paleoclimate provides an ideal introduction to undergraduates, nonspecialist scientists, and general readers with a scientific background.
One of Springer’s Major Reference Works, this book gives the reader a truly global perspective. It is the first major reference work in its field. Paleoclimate topics covered in the encyclopedia give the reader the capability to place the observations of recent global warming in the context of longer-term natural climate fluctuations. Significant elements of the encyclopedia include recent developments in paleoclimate modeling, paleo-ocean circulation, as well as the influence of geological processes and biological feedbacks on global climate change. The encyclopedia gives the reader an entry point into the literature on these and many other groundbreaking topics.
This book introduces the reader to all the basic physical building blocks of climate needed to understand the present and past climate of Earth, the climates of Solar System planets, and the climates of extrasolar planets. These building blocks include thermodynamics, infrared radiative transfer, scattering, surface heat transfer and various processes governing the evolution of atmospheric composition. Nearly four hundred problems are supplied to help consolidate the reader's understanding, and to lead the reader towards original research on planetary climate. This textbook is invaluable for advanced undergraduate or beginning graduate students in atmospheric science, Earth and planetary science, astrobiology, and physics. It also provides a superb reference text for researchers in these subjects, and is very suitable for academic researchers trained in physics or chemistry who wish to rapidly gain enough background to participate in the excitement of the new research opportunities opening in planetary climate.
At a time when the evidence is stronger than ever that human activity is the primary cause for global climate change, William Ruddiman's breakthrough text returns in a thoroughly updated new edition. It offers a clear, engaging, objective portrait of the current state of climate science, including compelling recent findings on anthropogenic global warming and important advances in understanding past climates.
The principles of glacier physics are developed from basic laws in this up-to-date third edition for advanced students and researchers.
This volume focuses on the reconstruction of past ecosystems and provides a comprehensive review of current techniques and their application in exemplar studies. The 18 chapters address a wide variety of topics that span vertebrate paleobiology and paleoecology (body mass, postcranial functional morphology, evolutionary dental morphology, microwear and mesowear, ecomorphology, mammal community structure analysis), contextual paleoenvironmental studies (paleosols and sedimentology, ichnofossils, pollen, phytoliths, plant macrofossils), and special techniques (bone microstructure, biomineral isotopes, inorganic isotopes, 3-D morphometrics, and ecometric modeling). A final chapter discusses how to integrate results of these studies with taphonomic data in order to more accurately characterize an ancient ecosystem. Current investigators, advanced undergraduates, and graduate students interested in the field of paleoecology will find this book immensely useful. The length and structure of the volume also makes it suitable for teaching a college-level course on reconstructing Cenozoic ecosystems.
In response to a request from Congress, Surface Temperature Reconstructions for the Last 2,000 Years assesses the state of scientific efforts to reconstruct surface temperature records for Earth during approximately the last 2,000 years and the implications of these efforts for our understanding of global climate change. Because widespread, reliable temperature records are available only for the last 150 years, scientists estimate temperatures in the more distant past by analyzing "proxy evidence," which includes tree rings, corals, ocean and lake sediments, cave deposits, ice cores, boreholes, and glaciers. Starting in the late 1990s, scientists began using sophisticated methods to combine proxy evidence from many different locations in an effort to estimate surface temperature changes during the last few hundred to few thousand years. This book is an important resource in helping to understand the intricacies of global climate change.