Download Free Principles Of Electrical Machine Design Book in PDF and EPUB Free Download. You can read online Principles Of Electrical Machine Design and write the review.

In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This timely new edition offers up-to-date theory and guidelines for the design of electrical machines, taking into account recent advances in permanent magnet machines as well as synchronous reluctance machines. New coverage includes: Brand new material on the ecological impact of the motors, covering the eco-design principles of rotating electrical machines An expanded section on the design of permanent magnet synchronous machines, now reporting on the design of tooth-coil, high-torque permanent magnet machines and their properties Large updates and new material on synchronous reluctance machines, air-gap inductance, losses in and resistivity of permanent magnets (PM), operating point of loaded PM circuit, PM machine design, and minimizing the losses in electrical machines> End-of-chapter exercises and new direct design examples with methods and solutions to real design problems> A supplementary website hosts two machine design examples created with MATHCAD: rotor surface magnet permanent magnet machine and squirrel cage induction machine calculations. Also a MATLAB code for optimizing the design of an induction motor is provided Outlining a step-by-step sequence of machine design, this book enables electrical machine designers to design rotating electrical machines. With a thorough treatment of all existing and emerging technologies in the field, it is a useful manual for professionals working in the diagnosis of electrical machines and drives. A rigorous introduction to the theoretical principles and techniques makes the book invaluable to senior electrical engineering students, postgraduates, researchers and university lecturers involved in electrical drives technology and electromechanical energy conversion.
The only book on the market that emphasizes machine design beyond the basic principles of AC and DC machine behavior AC electrical machine design is a key skill set for developing competitive electric motors and generators for applications in industry, aerospace, and defense. This book presents a thorough treatment of AC machine design, starting from basic electromagnetic principles and continuing through the various design aspects of an induction machine. Introduction to AC Machine Design includes one chapter each on the design of permanent magnet machines, synchronous machines, and thermal design. It also offers a basic treatment of the use of finite elements to compute the magnetic field within a machine without interfering with the initial comprehension of the core subject matter. Based on the author’s notes, as well as after years of classroom instruction, Introduction to AC Machine Design: Brings to light more advanced principles of machine design—not just the basic principles of AC and DC machine behavior Introduces electrical machine design to neophytes while also being a resource for experienced designers Fully examines AC machine design, beginning with basic electromagnetic principles Covers the many facets of the induction machine design Introduction to AC Machine Design is an important text for graduate school students studying the design of electrical machinery, and it will be of great interest to manufacturers of electrical machinery.
Electrical Machine Design caters to the requirements of undergraduate and postgraduate students of electrical engineering and industry novices. The authors have adopted a flow chart based approach to explain the subject. This enables an in-depth understanding of the design of different types of electrical machines with an appropriate introduction to basic design considerations and the magnetic circuits involved. The book aids students to prepare for various competitive exams through objective questions, worked-out examples and review questions in increasing order of difficulty. MATLAB and C programs and Finite Element simulations using Motor Solve, featured in the text offers a profound new perspective in understanding of automated design of electrical machines.
Very Good,No Highlights or Markup,all pages are intact.
Offers key concepts of electrical machines embedded with solved examples, review questions, illustrations and open book questions.
An accessible introduction to all important aspects of electric machines, covering dc, induction, and synchronous machines. Also addresses modern techniques of control, power electronics, and applications. Exposition builds from first principles, making this book accessible to a wide audience. Contains a large number of problems and worked examples.
The book gives comprehensive treatment to the principles of electrical machine design. It is concise and up-to-date with special emphasis on the computerised design. It has been prepared specifically for engineering college teachers and students, and practising engineers to enable them to appreciate the salient aspects of electrical machine design with reference to computer applications. Computer programs on small problems written in FORTRAN and C++ language have been added to guide the readers. Contents: Basic Considerations / Heating and Cooling / Main Dimensions / Magnetic Circuit Calculations / Electric Circuit Calculations / Design of Transformer / Design of Rotating Machines / Finite Element Method / Computer Programs in C++ language / Appendices / Index
For over 15 years "Principles of Electrical Machines” is an ideal text for students who look to gain a current and clear understanding of the subject as all theories and concepts are explained with lucidity and clarity. Succinctly divided in 14 chapters, the book delves into important concepts of the subject which include Armature Reaction and Commutation, Single-phase Motors, Three-phase Induction motors, Synchronous Motors, Transformers and Alternators with the help of numerous figures and supporting chapter-end questions for retention.
This Second Edition extensively covers advanced issues/subjects in electric machines, starting from principles, to applications and case studies with ample graphical (numerical) results. This textbook is intended for second (and third) semester courses covering topics such as modeling of transients, control principles, electromagnetic and thermal finite element analysis, and optimal design (dimensioning). Notable recent knowledge with strong industrialization potential has been added to this edition, such as: Orthogonal models of multiphase a.c. machines Thermal Finite Element Analysis of (FEA) electric machines FEA–based–only optimal design of a PM motor case study Line start synchronizing premium efficiency PM induction machines Induction machines (three and single phase), synchronous machines with DC excitation, with PM-excitation, and with magnetically salient rotor and a linear Pm oscillatory motor are all investigated in terms of transients, electromagnetic FEM analysis and control principles. Case studies, numerical examples, and lots of discussion of FEM results for PMSM and IM are included throughout the book. The optimal design is treated in detail using Hooke–Jeeves and GA algorithms with case comparison studies in dedicated chapters for IM and PMSM. Numerous computer simulation programs in MATLAB® and Simulink® are available online that illustrate performance characteristics present in the chapters, and the FEM and optimal design case studies (and codes) may be used as homework to facilitate a deeper understanding of fundamental issues.