Download Free Principles Of Constraint Programming Book in PDF and EPUB Free Download. You can read online Principles Of Constraint Programming and write the review.

Constraints are everywhere: most computational problems can be described in terms of restrictions imposed on the set of possible solutions, and constraint programming is a problem-solving technique that works by incorporating those restrictions in a programming environment. It draws on methods from combinatorial optimisation and artificial intelligence, and has been successfully applied in a number of fields from scheduling, computational biology, finance, electrical engineering and operations research through to numerical analysis. This textbook for upper-division students provides a thorough and structured account of the main aspects of constraint programming. The author provides many worked examples that illustrate the usefulness and versatility of this approach to programming, as well as many exercises throughout the book that illustrate techniques, test skills and extend the text. Pointers to current research, extensive historical and bibliographic notes, and a comprehensive list of references will also be valuable to professionals in computer science and artificial intelligence.
Constraint programming aims at supporting a wide range of complex applications, which are often modeled naturally in terms of constraints. Early work, in the 1960s and 1970s, made use of constraints in computer graphics, user interfaces, and artificial intelligence. Such work introduced a declarative component in otherwise-procedural systems to reduce the development effort.
Constraint Programming is a problem-solving paradigm that establishes a clear distinction between two pivotal aspects of a problem: (1) a precise definition of the constraints that define the problem to be solved and (2) the algorithms and heuristics enabling the selection of decisions to solve the problem. It is because of these capabilities that Constraint Programming is increasingly being employed as a problem-solving tool to solve scheduling problems. Hence the development of Constraint-Based Scheduling as a field of study. The aim of this book is to provide an overview of the most widely used Constraint-Based Scheduling techniques. Following the principles of Constraint Programming, the book consists of three distinct parts: The first chapter introduces the basic principles of Constraint Programming and provides a model of the constraints that are the most often encountered in scheduling problems. Chapters 2, 3, 4, and 5 are focused on the propagation of resource constraints, which usually are responsible for the "hardness" of the scheduling problem. Chapters 6, 7, and 8 are dedicated to the resolution of several scheduling problems. These examples illustrate the use and the practical efficiency of the constraint propagation methods of the previous chapters. They also show that besides constraint propagation, the exploration of the search space must be carefully designed, taking into account specific properties of the considered problem (e.g., dominance relations, symmetries, possible use of decomposition rules). Chapter 9 mentions various extensions of the model and presents promising research directions.
Constraint Programming aims at solving hard combinatorial problems, with a computation time increasing in practice exponentially. The methods are today efficient enough to solve large industrial problems, in a generic framework. However, solvers are dedicated to a single variable type: integer or real. Solving mixed problems relies on ad hoc transformations. In another field, Abstract Interpretation offers tools to prove program properties, by studying an abstraction of their concrete semantics, that is, the set of possible values of the variables during an execution. Various representations for these abstractions have been proposed. They are called abstract domains. Abstract domains can mix any type of variables, and even represent relations between the variables. In this work, we define abstract domains for Constraint Programming, so as to build a generic solving method, dealing with both integer and real variables. We also study the octagons abstract domain, already defined in Abstract Interpretation. Guiding the search by the octagonal relations, we obtain good results on a continuous benchmark. We also define our solving method using Abstract Interpretation techniques, in order to include existing abstract domains. Our solver, AbSolute, is able to solve mixed problems and use relational domains. Exploits the over-approximation methods to integrate AI tools in the methods of CP Exploits the relationships captured to solve continuous problems more effectively Learn from the developers of a solver capable of handling practically all abstract domains
Upper-division textbook covering foundations of constraint programming and applications to scheduling, optimisation etc.
This book constitutes the refereed conference proceedings of the 23nd International Conference on Principles and Practice of Constraint Programming, CP 2017, held in Melbourne, Australia from August 28, 2017 until September 1, 2017. The conference is colocated with the 20th International Conference on Theory and Applications of Satisfiability Testing (SAT 2017) and the 33rd International Conference on Logic Programming. The 46 revised full papers presented were carefully reviewed and selected from 115 submissions. The scope of the contributions includes all aspects of computing with constraints, including theory, algorithms, environments, languages, models, systems, and applications such as decision making, resource al location, scheduling, configuration, and planning. The papers are grouped into the following tracks: technical track; application track; machine learning & CP track; operations research & CP track; satisfiability & CP track, test and verification & CP track; journal & sister conference track.
Constraints; Simplification, optimization and implication; Finite constraint domains; Constraint logic programming; Simple modeling; Using data structures; Controlling search; Modelling with finite domain constraints; Advanced programming techniques; CLP systems; Other constraint programming languages; Constraint databases; Index.
Constraint reasoning has matured over the last three decades with contributions from a diverse community of researchers in artificial intelligence, databases and programming languages, operations research, management science, and applied mathematics. In Constraint Processing, Rina Dechter synthesizes these contributions, as well as her own significant work, to provide the first comprehensive examination of the theory that underlies constraint processing algorithms.
This book constitutes the proceedings of the 25th International Conference on Principles and Practice of Constraint Programming, CP 2019, held in Stamford, CT, USA, France, in September/October 2019. The 44 full papers presented in this volume were carefully reviewed and selected from 118 submissions. They deal with all aspects of computing with constraints including theory, algorithms, environments, languages, models, systems, and applications such as decision making, resource allocation, scheduling, configuration, and planning. The papers were organized according to the following topics/tracks: technical track; application track; multi-agent and parallel CP track; testing and verification track; CP and data science track; computational sustainability; and CP and life sciences track.
This volume contains the papers presented at CP 2009: The 15th International Conference on Principles and Practice of Constraint Programming. It was held from September 20–24, 2009 at the Rectory of the New University of Lisbon, Portugal. Everyone involved with the conference thanks our sponsors for their support. There were 128 submissions to the research track, of which 53 were accepted for a rate of 41.4%. Each submission was reviewed by three reviewers, with a small number of additional reviews obtained in exceptional cases. Each review waseitherbyaProgrammeCommitteemember,orbyacolleagueinvitedtohelp by a committee member thanks to their particular expertise. Papers submitted as long papers were accepted at full length or not at all. It is important to note that papers submitted as short papers were held to the same high standards of qualityas long papers. There is thus no distinction in these proceedings between long and short papers, except of course the number of pages they occupy. As it happens, the acceptancerates of short and long papers wereverysimilar indeed. Therewere13submissionstotheapplicationtrack,ofwhich8wereaccepted, fora rateof61.5%.Papersunderwentthe samereviewprocessasregularpapers, and there was not a separate committee for reviewing application track papers. However, papers in the application track were not required to be original or novel research, but to be original and novel as an application of constraints.