Download Free Principles Of Classical Thermodynamics Book in PDF and EPUB Free Download. You can read online Principles Of Classical Thermodynamics and write the review.

The aim of this book is to present Classical Thermodynamics in a unified way, from the most fundamental principles to non-uniform systems, thereby requiring the introduction of coarse graining methods, leading for instance to phase field methods. Solutions thermodynamics and temperature-concentration phase diagrams are covered, plus also a brief introduction to statistical thermodynamics and topological disorder. The Landau theory is included along with a general treatment of multicomponent instabilities in various types of thermodynamic applications, including phase separation and order-disorder transitions. Nucleation theory and spinodal decomposition are presented as extreme cases of a single approach involving the all-important role of fluctuations.In this way, it is hoped that this coverage will reconcile in a unified manner techniques generally presented separately in physics and materials texts.
This text explores the connections between different thermodynamic subjects related to fluid systems. Emphasis is placed on the clarification of concepts by returning to the conceptual foundation of thermodynamics and special effort is directed to the use of a simple nomenclature and algebra. The book presents the structural elements of classical thermodynamics of fluid systems, covers the treatment of mixtures, and shows via examples and references both the usefulness and the limitations of classical thermodynamics for the treatment of practical problems related to fluid systems. It also includes diverse selected topics of interest to researchers and advanced students and four practical appendices, including an introduction to material balances and step-by-step procedures for using the Virial EOS and the PRSV EOS for fugacities and the ASOG-KT group method for activity coefficients. The Olivera-Fuentes table of PRSV parameters for more than 800 chemical compounds and the Gmehling-Tochigi tables of ASOG interaction parameters for 43 groups are included.
This book presents computer simulations using molecular dynamics techniques in statistical physics, with a focus on macromolecular systems. The numerical methods are introduced in the form of computer algorithms and can be implemented in computers using any desired computer programming language, such as Fortran 90, C/C++, and others. The book also explains how some of these numerical methods and their algorithms can be implemented in the existing computer programming software of macromolecular systems, such as the CHARMM program. In addition, it examines a number of advanced concepts of computer simulation techniques used in statistical physics as well as biological and physical systems. Discussing the molecular dynamics approach in detail to enhance readers understanding of the use of this method in statistical physics problems, it also describes the equations of motion in various statistical ensembles to mimic real-world experimental conditions. Intended for graduate students and research scientists working in the field of theoretical and computational biophysics, physics and chemistry, the book can also be used by postgraduate students of other disciplines, such as applied mathematics, computer sciences, and bioinformatics. Further, offering insights into fundamental theory, it as a valuable resource for expert practitioners and programmers and those new to the field.
This textbook facilitates students’ ability to apply fundamental principles and concepts in classical thermodynamics to solve challenging problems relevant to industry and everyday life. It also introduces the reader to the fundamentals of statistical mechanics, including understanding how the microscopic properties of atoms and molecules, and their associated intermolecular interactions, can be accounted for to calculate various average properties of macroscopic systems. The author emphasizes application of the fundamental principles outlined above to the calculation of a variety of thermodynamic properties, to the estimation of conversion efficiencies for work production by heat interactions, and to the solution of practical thermodynamic problems related to the behavior of non-ideal pure fluids and fluid mixtures, including phase equilibria and chemical reaction equilibria. The book contains detailed solutions to many challenging sample problems in classical thermodynamics and statistical mechanics that will help the reader crystallize the material taught. Class-tested and perfected over 30 years of use by nine-time Best Teaching Award recipient Professor Daniel Blankschtein of the Department of Chemical Engineering at MIT, the book is ideal for students of Chemical and Mechanical Engineering, Chemistry, and Materials Science, who will benefit greatly from in-depth discussions and pedagogical explanations of key concepts. Distills critical concepts, methods, and applications from leading full-length textbooks, along with the author’s own deep understanding of the material taught, into a concise yet rigorous graduate and advanced undergraduate text; Enriches the standard curriculum with succinct, problem-based learning strategies derived from the content of 50 lectures given over the years in the Department of Chemical Engineering at MIT; Reinforces concepts covered with detailed solutions to illuminating and challenging homework problems.
An introductory textbook presenting the key concepts and applications of thermodynamics, including numerous worked examples and exercises.
This book provides a concise overview of thermodynamics, and is written in a manner which makes the difficult subject matter understandable. Thermodynamics is systematic in its presentation and covers many subjects that are generally not dealt with in competing books such as: Carathéodory's approach to the Second Law, the general theory of phase transitions, the origin of phase diagrams, the treatment of matter subjected to a variety of external fields, and the subject of irreversible thermodynamics.The book provides a first-principles, postulational, self-contained description of physical and chemical processes. Designed both as a textbook and as a monograph, the book stresses the fundamental principles, the logical development of the subject matter, and the applications in a variety of disciplines. This revised edition is based on teaching experience in the classroom, and incorporates many exercises in varying degrees of sophistication. The stress laid on a didactic, logical presentation, and on the relation between theory and experiment should provide a reader with a more intuitive understanding of the basic principles.Graduate students and professional chemists in physical chemistry and inorganic chemistry, as well as graduate students and professionals in physics who wish to acquire a more sophisticated overview of thermodynamics and related subject matter will find this book extremely helpful. - Takes the reader through various steps to understanding - Review of fundamentals - Development of subject matter - Applications in a variety of disciplines
Because it is grounded in math, chemical thermodynamics is often perceived as a difficult subject and many students are never fully comfortable with it. The first authoritative textbook presentation of equilibrium chemical and phase thermodynamics in a reformulated geometrical framework, Chemical and Phase Thermodynamics shows how this famously difficult subject can be accurately expressed with only elementary high-school geometry concepts. Featuring numerous suggestions for research-level extensions, this simplified alternative to standard calculus-based thermodynamics expositions is perfect for undergraduate and beginning graduate students as well as researchers.
The laws of thermodynamics are amongst the most assured and wide-ranging of all scientific laws. They do not pretend to explain any observation in molecular terms but, by showing the necessary relationships between different physical properties, they reduce otherwise disconnected results to compact order, and predict new effects. This classic title, first published in 1957, is a systematic exposition of principles, with examples of applications, especially to changes of places and the conditions for stability. In all this entropy is a key concept.